硬币问题

硬币问题:有n中硬币,面值分辨为 v1,v2,v3...vn.每种都有无限多个。给定非负整数S,可以选用多少个硬币使得面值之和为S?输出硬币数目的最大值和最小值。

问题分析:固定终点的最长路问题。用图来建模,如果s大于vi,则s到vi有一条边。

  初步代码:

     d(i)表示从结点i到0的最长路

int dp(int s){

int & ans=d[s];

if(ans>=0)  return ans;

ans =0;

for(int i=1;i<=n;i++) if(s>=0v{i}) ans=max(ans,dp(s-v[i])+1);

return ans;

}


初步代码存在着一个致命的错误,s不一定能真的到达0.所以我们可以将ans初始化的值变为-1,若没计算过则先赋值为-INF,所以当s无法到达0的路线,我们直接加上一个负无穷小的数,默认为放弃。


最终代码为:


int dp(int s){

int & ans=d[s];

if(ans!=-1) return ans;

ans=-INF;

for(int i=1;i<=n;i++) if(s>=v[i])  ans=max(ans,dp(s-v[i])+1);

return ans;   //无法到达这返回一个很小的值,相当于放弃

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值