硬币问题:有n中硬币,面值分辨为 v1,v2,v3...vn.每种都有无限多个。给定非负整数S,可以选用多少个硬币使得面值之和为S?输出硬币数目的最大值和最小值。
问题分析:固定终点的最长路问题。用图来建模,如果s大于vi,则s到vi有一条边。
初步代码:
d(i)表示从结点i到0的最长路
int dp(int s){
int & ans=d[s];
if(ans>=0) return ans;
ans =0;
for(int i=1;i<=n;i++) if(s>=0v{i}) ans=max(ans,dp(s-v[i])+1);
return ans;
}
初步代码存在着一个致命的错误,s不一定能真的到达0.所以我们可以将ans初始化的值变为-1,若没计算过则先赋值为-INF,所以当s无法到达0的路线,我们直接加上一个负无穷小的数,默认为放弃。
最终代码为:
int dp(int s){
int & ans=d[s];
if(ans!=-1) return ans;
ans=-INF;
for(int i=1;i<=n;i++) if(s>=v[i]) ans=max(ans,dp(s-v[i])+1);
return ans; //无法到达这返回一个很小的值,相当于放弃
}