MxN螺旋矩阵(由外向内)

本文介绍如何构建MxN螺旋矩阵及按顺时针方向访问的方法,包括如何计算特定坐标下的值,提供C++代码示例。

问题描述

按顺时针方向构建一个MxN的螺旋矩阵(或按顺时针方向螺旋访问一个MxN的矩阵):在不构造螺旋矩阵的情况下,给定坐标ij值求其对应的值f(i, j)。如对11x7 矩阵, f(4, 0) = 29  f(4, 1) = 54 f(4, 3) = 74  f(4, 4) = 61


解析

MxN矩阵,最先访问最外层的MxN的矩形上的元素,接着再访问里面一层的(M-2)x(N-2)矩形上的元素.最后可能会剩下一些元素,组成一个点或一条线。对第i个矩阵(i=0,1,2.....),4个顶点的坐标为:

(i,i) ------------------------------(i, n-1-i)

    |                                                    |

    |                                                    |

 (m-1-i)---------------------------(m-1-i,n-1-i)

访问该矩形上的所有元素,只须用4个for循环,每个循环访问一个点和一边条边上的元素即可。另外,要注意对最终可能剩下的1xK或Kx1矩阵再做个特殊处理。代码:

inline void act(int t) { 
  printf("%3d ", t); 
}

const int small = col<row?col:row;
const int count = small/2;

for (int i = 0; i < count; ++i) {
    const int C = col-1-i;
    const int R = row-1-i;

    for (int j = i; j < C; ++j)
     act(arr[i][j]);
    for (int j = i; j < R; ++j) 
     act(arr[j][C]);
    for (int j = C; j > i; --j) 
     act(arr[R][j]);
    for (int j = R; j > i; --j) 
     act(arr[j][i]);
 }

if (small & 1) {
    const int i = count;
    if (row <= col){
    for (int j = i; j < col-i; ++j)
      act(arr[i][j]);
    else{
    for (int j = i; j < row-i; ++j) 
      act(arr[j][i]);
  }
}
如果 只是构建螺旋矩阵的话,稍微修改可以实现4个for循环独立:

const int small = col < row ? col : row;

 const int count = small / 2;

 for (int i = 0; i < count; ++i) {
    const int C = col-1-i;
    const int R = row-1-i;
    const int cc = C-i;
    const int rr = R-i;

    const int s = 2*i*(row+col-2*i)+1;
    for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;
    for (int j = i, k = s+cc; j < R; ++j) arr[j][C] = k++;
    for (int j = C, k = s+cc+rr; j > i; --j) arr[R][j] = k++;
    for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;

 }
 if (small&1) {
    const int i = count;
    int k = 2*i*(row+col-2*i)+1;
    if (row <= col){
       for (int j = i; j <col-i; ++j) arr[i][j] = k++;
    } 
    else{
       for (int j = i; j <row-i; ++j) arr[j][i] = k++;
    } 
 }

关于s的初始值取2*i*(row+col-2*i)+1

由于C++的二维数组是通过一维数组实现的。二维数组的实现一般有下面三种:1)静态分配足够大的数组;2)动态分配一个长为m*n的一维数组;3)动态分配m个长为n的一维数组,并将它们的指针存在一个长为m的一维数组。二维数组的不同实现方法,对函数接口有很大影响。给定坐标直接求值f(x,y);如前面所述,对第i个矩形(i=0, 1, 2 …),4个顶点的坐标为:

(i,i) ------------------------------(i, n-1-i)

    |                                                    |

    |                                                    |

 (m-1-i)---------------------------(m-1-i,n-1-i)

对给定的坐标(x,y),如果它落在某个这类矩形上,显然其所在的矩形编号为:k = min{ x,y,m-1-x,n-1-y};MxN矩阵删除访问第k个矩形前所访问的所有元素后,可得到(m-2*k)*(n-2*k)矩阵,因此已访问的元素个数为:m*n-(m-2*k)*(n-2*k)=2*k*(m+n-2*k),因而(k,k)对应的值为:T(k) = 2*k*(m+n-2*k)+1.对某个矩形,设点(x, y)到起始点(k,k)的距离d = x-k + y-k = x+y-2*k;① 向右和向下都只是横坐标或纵坐标增加1,这两条边上的点满足f(x, y) = T(k) + d;② 向左和向下都只是横坐标或纵坐标减少1,这两条边上的点满足f(x, y) = T(k+1) - d.如果给定坐标的点(x, y),不在任何矩形上,则它在一条线上,仍满足f(x, y) = T(k) + d

int getv(int row, int col, int max_row, int max_col){ // row < max_row, col < max_col
    int level, diatancce;
    int start_value, next_vlue;

    level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));
    distance = row + col - level * 2;
    start_value = 2 * level * (max_row + max_col - 2 * level) + 1;
 
    if (row == level || col == max_col - 1 - level ||
       (max_col < max_row && level * 2 + 1 == max_col))
           return start_value + distance;
    next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;
    
    return next_value - distance;
}

特别说明

上面的讨论都是基于MxN矩阵的,对于特例NxN矩阵,可以做更多的优化。比如构建螺旋矩阵,如果n为奇数,则矩阵可以拆分为几个矩形加上一个点。前面的条件判断可以优化为:if(small&i) act[count][count];甚至可以调整4个for循环的遍历元素个数(前面代码,每个for循环遍历n-1-2*i个元素,可以调整为:n-2*i,n-1-2*i, n-1-2*i,n-2-2*i)从而达到省略if判断。

代码:

//螺旋矩阵,给定坐标直接求值 
#include<iostream>
#include<algorithm>

using std::min;
using std::cout;

/*
int getv2(int row, int col, int max_row, int max_col){ // row < max_row, col < max_col
    int level,distance;
    int start_value, next_value;
   
    level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));
    distance = row + col - level * 2;

    start_value = 2 * level * (max_row + max_col - 2 * level) + 1;

    if (row == level || col == max_col - 1 - level) 
       return(start_value + distance);

    //++level; int next_value = 2 * level * (max_row + max_col - 2 * level) + 1;
    next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;

    if (next_value > max_col * max_row) 
       return(start_value + distance);
    
    return (next_value - distance);
}*/

int getv(int row, int col, int max_row, int max_col){ // row < max_row, col < max_col
    int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));
 int distance = row + col - level * 2;
 int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;
 if (row == level || col == max_col - 1 - level || (max_col < max_row && level * 2 + 1 == max_col))
    return start_value + distance;

 //++level; int next_value = 2 * level * (max_row + max_col - 2 * level) + 1;
 int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;
 return next_value - distance;

} 

int main( ){
  int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};
  const int sz = sizeof(test) / sizeof(test[0]);
  for (int k = 0; k < sz; ++k) {
    int M = test[k][0];
    int N = test[k][1];  

    for (int i = 0; i < M; ++i) {
      for (int j = 0; j < N; ++j)
        cout.width(4), cout << getv(i, j, M, N) << " ";
     cout << "\n";
    }
    cout << "\n";
 }
}

完整的代码

//螺旋矩阵 

#include<iostream>
int counter = 0; 
inline void act(int& t){
 //std::cout.width(3), std::cout << t;
 t = ++::counter;
}

void act_arr(int *arr, int row, int col, int max_col){ //col < max_col
 const int small = col < row ? col : row;
 const int count = small / 2;
 int *p = arr;

 for (int i = 0; i < count; ++i) {
    const int C = col - 1 - 2 * i;
    const int R = row - 1 - 2 * i;
    for (int j = 0; j < C; ++j) act(*p++);
    for (int j = 0; j < R; ++j) act(*p), p += max_col;
    for (int j = 0; j < C; ++j) act(*p--);
    for (int j = 0; j < R; ++j) act(*p), p -= max_col;
    p += max_col + 1;
 }
 if (small & 1) {
    const int i = count;
    if (row <= col) for (int j = 0; j < col - 2 * i; ++j) act(*p++);
    else for (int j = 0; j < row - 2 * i; ++j) act(*p), p += max_col;
 }
} 

void act_arr(int* arr[], int row, int col){
 const int small = col < row ? col : row;
 const int count = small / 2;
 for (int i = 0; i < count; ++i) {
    const int C = col - 1 - i;
    const int R = row - 1 - i;
    for (int j = i; j < C; ++j) act(arr[i][j]);
    for (int j = i; j < R; ++j) act(arr[j][C]);
    for (int j = C; j > i; --j) act(arr[R][j]);
    for (int j = R; j > i; --j) act(arr[j][i]);
 }

 if (small & 1) {
    const int i = count;
    if (row <= col) for (int j = i; j < col - i; ++j) act(arr[i][j]);
    else for (int j = i; j < row - i; ++j) act(arr[j][i]);
 }
}

void act_arr_2(int* arr[], int row, int col){
 const int small = col < row ? col : row;
 const int count = small / 2;
 for (int i = 0; i < count; ++i) {
    const int C = col - 1 - i;
    const int R = row - 1 - i;
    const int cc = C - i;
    const int rr = R - i;
    const int s = 2 * i * (row + col - 2 * i) + 1;
    for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;
    for (int j = i, k = s + cc; j < R; ++j) arr[j][C] = k++;
    for (int j = C, k = s + cc + rr; j > i; --j) arr[R][j] = k++;
    for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;
 }
if (small & 1) {
    const int i = count;
    int k = 2 * i * (row + col - 2 * i) + 1;
    if (row <= col) for (int j = i; j < col - i; ++j) arr[i][j] = k++;
    else for (int j = i; j < row - i; ++j) arr[j][i] = k++;
 }
}

void print_arr(int *arr, int row, int col, int max_col){ //col < max_col
 for (int i = 0, *q = arr; i < row; ++i, q += max_col) {
    for (int *p = q; p < q + col; ++p)
     std::cout.width(4), std::cout << *p;
    std::cout << "\n";
 }
 std::cout << "\n";
}

void print_arr(int* a[], int row, int col){ //col < max_col
 for (int i = 0; i < row; ++i) {
    for (int j = 0; j < col; ++j)
     std::cout.width(4), std::cout << a[i][j];
    std::cout << "\n"; 

 } 
 std::cout << "\n";
}

void test_1(){
 const int M = 25;
 const int N = 25;
 int a[M][N];

 int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};
 const int sz = sizeof(test) / sizeof(test[0]);
 std::cout << "Test 1:\n";

 for (int i = 0; i < sz; ++i) {
    int row = test[i][0];
    int col = test[i][1];
    if (row < 0 || row > M) row = 3;
    if (col < 0 || col > N) col = 3;

    ::counter = 0;
    act_arr(&a[0][0], row, col, N);
    print_arr(&a[0][0], row, col, N);
 }
}

void test_2(){

 int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

 const int sz = sizeof(test) / sizeof(test[0]);
 std::cout << "Test 2:\n";
 for (int i = 0; i < sz; ++i) {
    int row = test[i][0];
    int col = test[i][1]; 

    int **arr = new int*[row];
    for (int i = 0; i < row; ++i) arr[i] = new int[col];
    ::counter = 0;

    act_arr(arr, row, col);
    print_arr(arr, row, col);
    for (int i = 0; i < row; ++i) delete[] arr[i];
    delete[] arr; 

 }
}

int main( ){
    test_1();
    test_2();
}

C语言经典NXN螺旋矩阵(由外向内)代码

//N阶螺旋矩阵
#include <stdio.h>
#include <stdlib.h>
int main()
{
    int N,i,j,n,num=1;
    int a[10][10]={0};
    printf("输入你要输出的几阶中断:");
    scanf("%d",&N);
    
     for(n=0;n<=N/2;n++)
     {
         for(j=n;j<=N-n-1;j++)
         a[n][j]=num++;
         
         for(i=n+1;i<N-n-1;i++)
         a[i][N-n-1]=num++;
         
         for(j=N-n-1;j>n;j--)
         a[N-n-1][j]=num++;
         
         for(i=N-n-1;i>n;i--)
         a[i][n]=num++;
     }    
     //输出螺旋矩阵 
     for(i=0;i<N;i++)
     {
         for(j=0;j<N;j++)
         printf("%2d ",a[i][j]);
     
         printf("\n");
      }    
     
     system("pause");
     return 0;
}     

思路是这样的,刚开始很容易想到顺时针赋值,如下图为5阶:分为四个方向顺时针赋值。每个方向负责相同数量的元素

但这样,后来发现当N为基数时,最中心一个数不能被赋值。 所以改为还是顺时针赋值,只是->方向多负责一个元素,右| 方向少负责一个元素

输出结果为:

 

====================================================================
转载请注明出处:http://blog.csdn.net/utimes/article/details/8779143
====================================================================
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值