关闭

手把手教你搭建caffe及手写数字识别(Ubuntu下且附mac、纯通俗教程)

18748人阅读 评论(2) 收藏 举报
分类:

手把手教你搭建caffe及手写数字识别



作者:七月在线课程助教团队,骁哲、小蔡、李伟、July
时间:二零一六年十一月九日
交流:深度学习实战交流Q群 472899334,有问题可以加此群共同交流。另探究实验背后原理,请参看此课程:11月深度学习班



一、前言

    在前面的教程中,我们搭建了tensorflow、torch,教程发布后,大家的问题少了非常多。但另一大框架caffe的问题则也不少,加之caffe也是11月深度学习班要讲的三大框架之一,因此,我们再把caffe的搭建完整走一遍,手把手且全程命令提示。本教程参考githubhttps://github.com/BVLC/caffe21天实战caffeP28Ubuntu环境准备。

    另,笔者的安装环境是Ubuntu14.04CUDA8.0cudnn5.1OpenCVGTX1070。关于这些的搭建可以参看“flappy bird“”及“Tensorflow学梵高作画”里面的安装教程。


 

二、 安装依赖项

   更新源

sudo apt-get update

参考官网页面地址:http://caffe.berkeleyvision.org/install_apt.html

安装命令:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

特别提示:ubuntu命令行里按住ctrl+shift+c是复制,ctrl+shift+v是粘贴

 

 

三、 相关安装

安装git命令:

sudo apt-get install git

安装BLAS命令:

sudo apt-get install libatlas-base-dev

安装pycaffe接口所需的依赖项:

sudo apt-get install -y python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags cython ipython

安装其他依赖项目:

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

 

 

四、 Caffe相关操作

下载caffe

sudo git clone https://github.com/BVLC/caffe.git

进入caffe

cd caffe

配置Makefile.config文件

sudo cp Makefile.config.example Makefile.config

修改Makefile.config:

sudo vi Makefile.config

笔者这里使用cudnn,所以将第四行

# USE_CUDNN := 1   前面的#删掉变为

USE_CUDNN := 1

示意图:

编译caffe

依次执行如下命令

sudo make all -j16

sudo make test -j16

sudo make runtest -j16

 

 

五、 编译Python用到的caffe文件

编译caffe

执行如下命令

make pycaffe -j16

 

 

六、 验证

cd python

python

import caffe

不报错就表明安装成功了!




七、基于caffe的手写数字识别

caffe MNIST by 小蔡
官方github地址:
https://github.com/BVLC/caffe
cd /caffe/caffe 
1.下载数据
./data/mnist/get_mnist.sh 
2.转化为lmdb格式
./examples/mnist/create_mnist.sh
3.训练数据
./examples/mnist/train_lenet.sh


    另,mac下的caffe安装请参照:https://ask.julyedu.com/question/7468。七月在线助教团队、二零一六年十一月九日。
2
1
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

Caffe学习-手写数字识别

1. Caffe训练方法综述\quadcaffe非常简单,训练时只需写prototxt文件即可,其大致的步骤为: Resize图片,转换存储格式(LMDB/LevelDB) 定义网络结构(编辑prot...
  • taoyanqi8932
  • taoyanqi8932
  • 2017-03-11 17:56
  • 2688

caffe训练自己的手写数字

转自:http://blog.csdn.net/houwenbin1986/article/details/52956101 搭建好caffe Python环境后,我们都需要跑通mnist和...
  • u013066730
  • u013066730
  • 2016-12-16 10:50
  • 1713

ubuntu下caffe手写数字识别问题、python接口测试

mnist caffe中手写代码设置
  • hjxu2016
  • hjxu2016
  • 2016-12-21 09:45
  • 566

caffe手写数字mnist训练测试使用教程

caffe windows下训练测试
  • houwenbin1986
  • houwenbin1986
  • 2016-07-22 09:36
  • 789

opencv3.3 caffe mnist 手写数字识别

  • 2017-12-29 16:32
  • 5.89MB
  • 下载

手把手入门神经网络系列(2)_74行代码实现手写数字识别

“机器学习”是一个很实践的过程。就像刚开始学游泳,你在只在岸上比划一堆规定动作还不如先跳到水里熟悉水性学习来得快。以我们学习“机器学习”的经验来看,很多高大上的概念刚开始不懂也没关系,先写个东西来跑跑...
  • longxinchen_ml
  • longxinchen_ml
  • 2015-12-13 10:17
  • 22205

手把手入门神经网络系列(2)_74行代码实现手写数字识别

作者: 龙心尘&&寒小阳  时间:2015年12月。  出处:  http://blog.csdn.net/longxinchen_ml/article/details/50281247  声...
  • qq_26898461
  • qq_26898461
  • 2016-01-05 15:44
  • 2770

手把手入门神经网络系列(2)_74行代码实现手写数字识别

作者: 龙心尘&&寒小阳 时间:2015年12月。 出处: http://blog.csdn.net/longxinchen_ml/article/details/50281247 声明:版...
  • yaoqiang2011
  • yaoqiang2011
  • 2015-12-13 12:36
  • 38466

手把手,74行代码实现手写数字识别

手把手,74行代码实现手写数字识别 689 次阅读 - 2015.12.29 - 人工智能 - 龙猫 http://dataunion.org/20992.html 1、 引言:...
  • zkl99999
  • zkl99999
  • 2016-01-04 14:05
  • 5971

手把手入门神经网络系列(2)_74行代码实现手写数字识别

版权声明:本文为博主原创文章,未经博主允许不得转载。 目录(?)[+] 作者: 龙心尘&&寒小阳  时间:2015年12月。  出处:  http://b...
  • cjianwyr
  • cjianwyr
  • 2017-02-07 11:54
  • 174
    个人资料
    • 访问:13453601次
    • 积分:50343
    • 等级:
    • 排名:第70名
    • 原创:159篇
    • 转载:0篇
    • 译文:6篇
    • 评论:13916条
    博主简介
    July,于2010年10月11日开始在CSDN上写博(搜索:“结构之法”,进入本博客),博客专注面试、算法、机器学习。2015年正式创业,七月在线创始人兼CEO,公司官网:七月在线(https://www.julyedu.com/),微博@研究者July。新书《编程之法》15年10月14日起正式上市。JulyEdu AI 交流Q群:204292834。July,2018/1月。
    July和他朋友们的创业平台
    我的微博
    July新书《编程之法》上市
    博客专栏
    最新评论