机器学习十大算法系列
文章平均质量分 93
本机器学习十大算法系列,涵盖机器学习&深度学习等相关领域中最为经典的一些算法,着重阐述每一个算法的核心理论原理,包括其相关实现和应用,通俗易懂浅显直白,是初学者学习机器学习和深度学习的入门佳作。
v_JULY_v
七月在线创始人兼CEO,结构之法算法之道blog之博主
展开
-
强化学习极简入门:通俗理解MDP、DP MC TC和Q学习、策略梯度、PPO
强化学习里面的概念、公式,相比ML/DL特别多,初学者刚学RL时,很容易被接连不断的概念、公式给绕晕,而且经常忘记概念与公式符号表达的一一对应(包括我自己在1.10日之前对好多满是概念/公式的RL书完全看不下去,如今都看得懂了,故如果读文本之前,你正在被RL各种公式困扰,相信看完这篇RL极简入门后就完全不一样了)。原创 2023-02-10 11:12:38 · 68158 阅读 · 123 评论 -
程序员面试、算法研究、机器学习、大模型/ChatGPT/AIGC、论文审稿、具身智能/人形机器人、RAG等16大系列集锦
程序员面试、算法研究、编程艺术、红黑树、机器学习5大经典原创系列集锦与总结作者:July--结构之法算法之道blog之博主。时间:2010年10月-2018年5月,一直在不断更新中..出处:http://blog.csdn.net/v_JULY_v。说明:本博客中部分文章经过不断修改、优化,已集结出版成书《编程之法:面试和算法心得》。前言开博4年有余,...原创 2020-01-05 20:42:56 · 758524 阅读 · 0 评论 -
如何通俗理解Word2Vec (23年修订版)
在继续聊 Word2vec 之前,先聊聊 NLP (自然语言处理)。NLP 里面,最细粒度的是词语,词语组成句子,句子再组成段落、篇章、文档。所以处理 NLP 的问题,首先就要拿词语开刀。咱们居住在各个国家的人们通过各自的语言进行交流,但机器无法直接理解人类的语言,所以需要先把人类的语言“计算机化”,那如何变成计算机可以理解的语言呢?我们可以从另外一个角度上考虑。举个例子,对于计算机,它是如何判断一个词的词性,是动词还是名词的呢?原创 2019-10-23 19:28:18 · 122087 阅读 · 58 评论 -
如何从RNN起步,一步一步通俗理解LSTM
如何从RNN起步,一步一步通俗理解LSTM前言提到LSTM,之前学过的同学可能最先想到的是ChristopherOlah的博文《理解LSTM网络》,这篇文章确实厉害,网上流传也相当之广,而且当你看过了网上很多关于LSTM的文章之后,你会发现这篇文章确实经典。不过呢,如果你是第一次看LSTM,则原文可能会给你带来不少障碍:...原创 2019-05-06 23:47:54 · 288920 阅读 · 157 评论 -
如何通俗理解EM算法
如何通俗理解EM算法前言 了解过EM算法的同学可能知道,EM算法是数据挖掘十大算法,可谓搞机器学习或数据挖掘的基本绕不开,但EM算法又像数据结构里的KMP算法,看似简单但又貌似不是一看就懂,想绕开却绕不开的又爱又恨,可能正在阅读此文的你感同身受。 一直以来,我都坚持一个观点:当你学...原创 2018-08-15 18:43:47 · 156048 阅读 · 103 评论 -
通俗理解kaggle比赛大杀器xgboost
通俗理解kaggle比赛大杀器xgboost说明:若出现部分图片无法正常显示而影响阅读,请以此处的文章为准:xgboost 题库版。时间:二零一九年三月二十五日。0 前言xgboost一直在竞赛江湖里被传为神器,比如时不时某个kaggle/天池比赛中,某人用xgboost于千军万马中斩获冠军。而我们的机器学习课...原创 2018-08-04 14:18:38 · 148418 阅读 · 67 评论 -
一文通透优化算法:从梯度下降、SGD到牛顿法、共轭梯度(23修订版)
一文通透优化算法:从随机梯度、随机梯度下降法到牛顿法、共轭梯度1 什么是梯度下降法经常在机器学习中的优化问题中看到一个算法,即梯度下降法,那到底什么是梯度下降法呢?维基百科给出的定义是梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近...原创 2018-08-01 23:23:34 · 29680 阅读 · 5 评论 -
一文读懂特征工程
一文读懂特征工程 作者:July说明:本文是七月在线机器学习第九期第五次课 特征工程的课程笔记,课程主讲老师:寒小阳 加号 张雨石 Johnson,本笔记得到寒小阳等相关老师的校对。时间:二零一八年七月三十一日。 0 前言我所在公司七月在线每个月都是各种机器学习、深度学...原创 2018-07-31 20:24:01 · 25155 阅读 · 6 评论 -
图解CNN:通过100张图一步步理解CNN
图解CNN:通过100张图一步步理解CNN作者:@Brandon Rohrer,链接:http://brohrer.github.io/how_convolutional_neural_networks_work.html译者:@zhwhong,链接:https://www.jianshu.com/p/fe428f0b32c1说明:本文被收录于七月在线APP 大题查看 深度学习第35题。本质上来讲...翻译 2018-03-06 17:42:16 · 49657 阅读 · 14 评论 -
BAT机器学习面试1000题系列(第1~305题)
BAT机器学习面试1000题系列整理:July、元超、立娜、德伟、贾茹、王剑、AntZ、孟莹等众人。本系列大部分题目来源于公开网络,取之分享,用之分享,且在撰写答案过程中若引用他人解析则必注明原作者及来源链接。另,不少答案得到寒小阳、管博士、张雨石、王赟、褚博士等七月在线名师审校。说明:本系列作为国内首个AI题库,首发于七月在线实验室公众号上:julyedulab,并部分更新...原创 2017-09-28 11:37:49 · 516432 阅读 · 43 评论 -
Kaggle—So Easy!百行代码实现排名Top 5%的图像分类比赛
Kaggle—So Easy!百行代码实现排名Top 5%的图像分类比赛作者:七月在线彭老师责编:翟惠良 JulyGithub: https://github.com/pengpaiSH/Kaggle_NCFM前言 根据我个人的经验,学好AI,有五个必修:数学、数据结构、Python数据分析、ML、DL,必修之外,有五个选修可供选择:NLP、CV、DM、量化、Spark,然后配套七月在线的这原创 2017-05-10 22:56:53 · 36006 阅读 · 4 评论 -
GAN之父在NIPS 2016上做的报告:两个竞争网络的对抗(含译文下载)
GAN之父在NIPS 2016上做的报告:两个竞争网络的对抗(含译文全文PDF下载)作者:Ian Goodfellow翻译:七月在线DL翻译组译者:范诗剑 汪识瀚 李亚楠审校:管博士 寒小阳 加号责编:翟惠良声明:本译文仅供学习交流,由于译者水平有限,有任何翻译不当之处,敬请批评留言指正,我们定改进。转载请注明出处。**译文全文PDF下载**:[attach]2116[/attach]小编说:20翻译 2017-03-06 23:32:40 · 30838 阅读 · 1 评论 -
如何从零起步学习AI
数据科学家的成长之路与学习路线:如何入门ML/DL前言我从2012年一直以一个业余研究者的身份开始学习机器学习,参考了诸多资料写了SVM模型的学习笔记。在一直想继续写但每每时间错不开的反复纠结中,于14年年底终于腾出时间,又开始写最大熵、adaboost、聚类、贝叶斯、LDA等模型的学习笔记。当然,很多很多的知识点和模型,还是自觉了解的太浅,所以能有机会就继续学习。比如昨天,又买了一本人邮新出版的原创 2017-01-15 13:07:56 · 53893 阅读 · 14 评论 -
手把手教你搭建caffe及手写数字识别(Ubuntu下且附mac、纯通俗教程)
手把手教你搭建caffe及手写数字识别作者:骁哲、李伟、小蔡、July说明:时间:一、前言 在前面的教程中,我们搭建了tensorflow、torch,教程发布后,大家的问题少了非常多。但另一大框架caffe的问题则也不少,特此,我们再把caffe的搭建完整走一遍,手把手且全程命令提示。本教程参考github:https://github.com/BVLC/caffe、及《21天实战caff原创 2016-11-08 19:50:07 · 37327 阅读 · 3 评论 -
教你从头到尾利用DQN自动玩flappy bird(全程命令提示,GPU+CPU版)
教你从头到尾利用DQN自动玩flappy bird(全程命令提示、纯小白教程)前言(安装ubuntu14.04省略,当读者刚刚安装好ubuntu14.04后,直接看一下步骤安装就行。) 一、 安装必要NVIDIA驱动、CUDA、cudnn apt-get update (更新源)apt-get install vim (安装VIM) vi /etc/default/grub (进入grub文件)原创 2016-10-13 21:26:10 · 50794 阅读 · 13 评论 -
基于torch学汪峰写歌词、聊天机器人、图像着色/生成、看图说话、字幕生成
手把手教你基于torch玩转:学汪峰写歌词、自动聊天机器人、图像着色、图像生成、看图说话、生成字幕作者:骁哲、李伟、小蔡。说明:本教程出自七月在线开发/市场团队、及七月在线5月深度学习班学员之手,有何问题欢迎加Q群交流:472899334。时间:二零一六年十月十二日。前言 我们教梵高作画的教程发布之后,国庆7天,上百位朋友一一陆续动手尝试,大有全民DL、全民实验之感。特别是来自DL班的小蔡同原创 2016-10-12 13:47:45 · 45008 阅读 · 15 评论 -
没GPU也能玩梵高作画:Ubuntu tensorflow CPU版
没GPU也能玩梵高作画:Ubuntu tensorflow CPU版作者:七月在线开发/市场团队骁哲、李伟、July时间:二零一六年九月二十七日一、前言 9月22号,我们开发/市场团队的两同事利用DL学梵高作画,安装cuda 8.0趟遍无数坑,做出来后,很多朋友求教程。因此,3天后的9月25日,便把教程公布出去《教你从头到尾利用DL学梵高作画:GTX 1070 cuda 8.0 tensor原创 2016-09-27 19:39:04 · 42478 阅读 · 21 评论 -
教你从头到尾利用DL学梵高作画:GTX 1070 cuda 8.0 tensorflow gpu版
教你从头到尾利用DL学梵高作画作者:七月在线开发/市场团队三人,骁哲、李伟、July配置:GTX 1070 cuda 8.0 Ubuntu 14.04 cudnn 5.1 tensorflow gpu时间:二零一六年九月二十五日一、前言 12年本博客推出SVM三层境界,July开始学习接触ML。14年July团队开始做机器学习线下班的时候,July则跟着讲师一起学习更多ML,因此也写了一系列原创 2016-09-25 11:58:11 · 56431 阅读 · 56 评论 -
CNN笔记:通俗理解卷积神经网络
2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自2015年开始创业做在线教育后,太多的杂事、琐碎事,让我一直想再写点技术性文章但每每恨时间抽不开。然由于公司在不断开机器学习、深度学习等相关的在线课程,耳濡目染中,总会顺带着学习学习。原创 2016-07-02 22:14:50 · 866842 阅读 · 409 评论 -
通俗理解LDA主题模型(2014年版)
印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是因为这篇文档的前序铺垫太长(现在才意识到这些“铺垫”都是深刻理解LDA 的基础,但如果没有人帮助初学者提纲挈领、把握主次、理清思路,则很容易陷入LDA的细枝末节之中),还是因为其中的数学推导细节太多,导致一直没有完整看完过。2013年12月,在我组织的Machine Learning读书会第8期。原创 2014-11-17 16:11:58 · 326510 阅读 · 127 评论 -
从贝叶斯方法谈到贝叶斯网络
从贝叶斯方法谈到贝叶斯网络0 引言 事实上,介绍贝叶斯定理、贝叶斯方法、贝叶斯推断的资料、书籍不少,比如《数理统计学简史》,以及《统计决策论及贝叶斯分析 James O.Berger著》等等,然介绍贝叶斯网络的中文资料则非常少,中文书籍总共也没几本,有的多是英文资料,但初学者一上来就扔给他一堆英文论文,因无基础和语言的障碍而读得异常吃力导致无法继续读下去则是非...原创 2014-11-10 19:04:49 · 170589 阅读 · 64 评论 -
从拉普拉斯矩阵说到谱聚类
从谱聚类说到拉普拉斯矩阵0 引言 11月1日上午,机器学习班第7次课,邹博讲聚类(PPT),其中的谱聚类引起了自己的兴趣,他从最基本的概念:单位向量、两个向量的正交、方阵的特征值和特征向量,讲到相似度图、拉普拉斯矩阵,最后讲谱聚类的目标函数和其算法流程。 课后自己又琢磨了番谱聚类跟拉普拉斯矩阵,打算写篇博客记录学习心得, 若有不足或建议,欢迎随时不吝指出,thanks。原创 2014-11-03 11:33:37 · 86229 阅读 · 28 评论 -
Adaboost 算法的原理与推导
Adaboost 算法的原理与推导0 引言 一直想写Adaboost来着,但迟迟未能动笔。其算法思想虽然简单:听取多人意见,最后综合决策,但一般书上对其算法的流程描述实在是过于晦涩。昨日11月1日下午,在我组织的机器学习班第8次课上讲决策树与Adaboost,其中,Adaboost讲得酣畅淋漓,讲完后,我知道,可以写本篇博客了。 无心啰嗦,本...原创 2014-11-02 23:31:07 · 164093 阅读 · 106 评论 -
最大熵模型中的数学推导
最大熵模型通俗导论引言 写完SVM之后,早就想继续写机器学习的系列,无奈一直时间不稳定且对各个模型算法的理解尚不够,所以一直迟迟未动笔。无独有偶,重写KMP得益于今年4月个人组织的算法班,而动笔继续写这个机器学习系列,正得益于今年10月组织的机器学习班。 10月26日机器学习班第6次课,身为讲师之一的邹博讲最大熵模型,从熵的概念,讲到为何要最大熵、最大熵的推导,以及求解参数的IIS方法,整个过程讲得非常流畅。晚上我把他的PPT 在微博上公开分享了出来。但对于没有上过课的朋友直接看PP原创 2014-10-27 16:28:57 · 89056 阅读 · 43 评论 -
概率统计极简入门:通俗理解微积分/期望方差/正态分布前世今生(23修订版)
数据挖掘中所需的概率论与数理统计知识(关键词:微积分、概率分布、期望、方差、协方差、数理统计简史、大数定律、中心极限定理、正态分布)导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之神秘芳踪,知晓其前后发明历史由来),相信,每一个学过概率论与数理统计的朋友都有必要了解数理统计学简...原创 2012-12-17 19:24:47 · 197147 阅读 · 126 评论 -
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1、KD树;2、神经网络;3、编程艺术第28章。你看到,blog内的文章与你于别处所见的任何都不同。于是,等啊等,等一台电脑,只好等待..”。得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到原创 2012-11-20 16:31:35 · 213407 阅读 · 149 评论 -
支持向量机通俗导论(理解SVM的三层境界)
动笔写这个支持向量机是费了不少劲和困难的,原因很简单一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够。得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介绍支持向量机的导论性的文章本文在写的过程中,参考了不少资料,包括《支持向量机导论》、《统计学习方法》及网友pluskid的支持向量机系列等等,于此,还是一篇。原创 2012-06-01 22:48:43 · 1519246 阅读 · 806 评论 -
从决策树学习谈到贝叶斯分类算法、EM、HMM
第一篇:从决策树学习谈到贝叶斯分类算法、EM、HMM (Machine Learning & Data Mining交流群:8986884)引言 最近在面试中,除了基础 & 算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类 &原创 2012-05-17 21:06:53 · 249293 阅读 · 72 评论 -
数据挖掘领域十大经典算法初探
数据挖掘领域十大经典算法初探 译者:July 二零一一年一月十五日-----------------------------------------参考文献:国际权威的学术组织ICDM,于06年12月年评选出的数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART翻译 2011-01-15 15:31:00 · 114211 阅读 · 55 评论