Torch学习资料

### 如何在树莓派上使用 PyTorch 进行深度学习 #### 系统环境准备 为了能够在树莓派上顺利运行 PyTorch 深度学习模型,首先需要完成树莓派的基础配置工作。这包括但不限于烧录操作系统镜像至存储卡、设置 Wi-Fi 或有线网络连接以及通过 SSH 实现远程访问等功能[^3]。 #### 安装依赖库 在开始安装 PyTorch 前,需确保已安装必要的 Python 版本及相关开发工具链。推荐使用的 Python 版本为 3.7,在此环境下可兼容最新发布的 PyTorch 软件包版本[^2]。此外还需要提前安装 pip 工具以便后续管理软件包。 #### 配置并安装 PyTorch 针对 ARM 架构设备如树莓派,官方并未提供预编译二进制文件支持直接下载安装方式;因此建议采用源码构建方法来部署适合硬件特性的定制化版本。具体过程涉及克隆 Git 存储库代码仓库链接地址位于参考资料中,并执行一系列命令完成本地编译流程[^4]: ```bash git clone --recursive https://github.com/pytorch/pytorch.git cd pytorch pip install -r requirements.txt python setup.py install ``` 需要注意的是整个编译周期可能较长且占用大量系统资源,请耐心等待直至结束。 #### 测试验证安装成果 当上述步骤全部完成后即可编写简单的脚本来检验是否能够正常调用框架功能模块。下面给出了一段用于加载 ResNet18 模型实例化的样例程序片段作为参考[^1]: ```python import torch model = torch.hub.load('pytorch/vision:v0.9.0', 'resnet18', pretrained=True) model.eval() print(model) ``` 如果一切无误,则会在终端打印出该神经网络结构定义详情说明其已被成功初始化完毕可供进一步实验探索之用了!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值