poj 1845

转载 2012年03月25日 11:51:29

大致题意:

A^B的所有约数(即因子)之和,并对其取模 9901再输出。

解题思路:

要求有较强数学思维的题

应用定理主要有三个:

要求有较强数学思维的题

应用定理主要有三个:

(1)   整数的唯一分解定理:

任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

A的所有因子之和为

S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

有了上面的数学基础,那么本题解法就很简单了:

1: A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时,记录2出现的次数+1A/=2

A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
     
A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


2A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n

1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

2)若n为偶数,一共有奇数项,:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

上式红色加粗的前半部分恰好就是原式的一半,依然递归求解

4:反复平方法计算幂次式p^n

这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE

p=2n=8为例

常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

这样做的要做8次乘法

而反复平方法则不同,

定义幂sq=1,再检查n是否大于0

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

n=8>0 ,把p自乘一次, p=p*p=4     n取半 n=4

n=4>0 ,再把p自乘一次, p=p*p=16   n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  n取半 n=1sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  n取半 n=0,弹出循环

}

sq=256就是所求,显然反复平方法只做了3次乘法

转自(http://www.cnblogs.com/lyy289065406/archive/2011/07/31/2122790.html

POJ1845-Sumdiv

转载请注明出处:優YoU  http://user.qzone.qq.com/289065406/blog/1309237394   大致题意: 求A^B的所有约数(即因子)之和,并对其取模...
  • lyy289065406
  • lyy289065406
  • 2011年07月31日 16:29
  • 5712

POJ 1845:Sumdiv 快速幂+逆元

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 ...
  • u010885899
  • u010885899
  • 2015年09月17日 10:41
  • 1330

poj 1845 Sumdiv 数论--等比数列和(逆元或者递归)

逆元求分数取模代码: #include #include #include #include using namespace std; const int mod=9901; int pow...
  • a601025382s
  • a601025382s
  • 2013年10月02日 12:10
  • 1468

poj(1845)

大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出。   解题思路: 要求有较强 数学思维 的题 应用定理主要有三个: 要求有较强 数学思维 的题 应用定理主要有三...
  • u011519618
  • u011519618
  • 2013年08月29日 18:02
  • 347

poj 1845

const LL mod = 9901LL ; const int maxn = 10008 ; bool is[maxn] ; int ps ; int ...
  • u013491262
  • u013491262
  • 2014年12月13日 13:29
  • 345

Poj - 1845

Sumdiv Description Consider two natural numbers A and B. Let S be the sum of all natural divisors ...
  • qq_35608674
  • qq_35608674
  • 2016年07月14日 22:19
  • 41

POJ - 1845

题目链接:https://vjudge.net/problem/POJ-1845题目大意:求A^B的所有因数和解题思路:由约数和定理可以知道,A可以分解成p1^a1*p2^a2*……pk^ak,那么A...
  • Nightmare_ak
  • Nightmare_ak
  • 2017年09月20日 23:15
  • 62

POJ 1845

以前做的忘了保存了,找不到博客,才记得这个大数类的经典没保留下来,重新做一个才得,这样的公式挺难得的,谨记着…… #include using namespace std; long long ...
  • u011466175
  • u011466175
  • 2013年10月10日 13:05
  • 547

POJ 1845 数学问题

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。 (0 我们首先要用到这样一个定理,数字A的所有因数之和, 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3...
  • liuyanfeier
  • liuyanfeier
  • 2016年06月02日 10:48
  • 265

Poj - 1845 - Sumdiv

Sumdiv Description Consider two natural numbers A and B. Let S be the sum of all natural divisors ...
  • qq_35608674
  • qq_35608674
  • 2016年07月14日 22:27
  • 48
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1845
举报原因:
原因补充:

(最多只允许输入30个字)