poj 1845

转载 2012年03月25日 11:51:29

大致题意:

A^B的所有约数(即因子)之和,并对其取模 9901再输出。

解题思路:

要求有较强数学思维的题

应用定理主要有三个:

要求有较强数学思维的题

应用定理主要有三个:

(1)   整数的唯一分解定理:

任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

A的所有因子之和为

S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

有了上面的数学基础,那么本题解法就很简单了:

1: A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时,记录2出现的次数+1A/=2

A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
     
A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


2A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n

1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

2)若n为偶数,一共有奇数项,:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

上式红色加粗的前半部分恰好就是原式的一半,依然递归求解

4:反复平方法计算幂次式p^n

这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE

p=2n=8为例

常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

这样做的要做8次乘法

而反复平方法则不同,

定义幂sq=1,再检查n是否大于0

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

n=8>0 ,把p自乘一次, p=p*p=4     n取半 n=4

n=4>0 ,再把p自乘一次, p=p*p=16   n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  n取半 n=1sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  n取半 n=0,弹出循环

}

sq=256就是所求,显然反复平方法只做了3次乘法

转自(http://www.cnblogs.com/lyy289065406/archive/2011/07/31/2122790.html

相关文章推荐

POJ1845-Sumdiv

  • 2011年07月31日 23:07
  • 8KB
  • 下载

poj1845(唯一分解定理,等比数列求和,约数个数公式)

/* translation: 输入两个数A,B。求A^B%9901的值 solution: 唯一分解定理, 首先将a进行质因数分解,存储在factor二维数组当中。其形式可以描述为: p1^...

poj1845 数论好题

求a^b的所有因数和。(a,b 分解质因数 a=a1^b1*a2^b2*...*an^bn 则 因数和为(a1^0+a1^1+...+a1^b1)*(a2^0+a2^1+...+a2^b2)*.....
  • yxr0105
  • yxr0105
  • 2016年05月23日 21:15
  • 149

POJ 1845 Sumdiv 求某数的幂取模

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11049   Accept...
  • acbron
  • acbron
  • 2013年04月10日 21:00
  • 275

POJ 1845 Sumdiv(求阶乘的因子和)

题目链接:http://poj.org/problem?id=1845

poj 1845 (逆元 + 约数和)

题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出。 思路:  A可以表示为A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中p...

POJ 1845 Sumdiv 快速求幂+同余+乘法逆元

题意:给定A, B,求A^B的所有因数之和,并模9901。 题解: 1: 对A进行素因子分解得      A = p1^a1 * p2^a2 * p3^a3 *...* pn^an.   ...
  • Tsaid
  • Tsaid
  • 2012年03月15日 21:03
  • 1516

poj 1845 Sumdiv 数论

题目链接:poj 1845         给定a,b两个数

poj-1845-Sumdiv

出处:優YoU  http://user.qzone.qq.com/289065406/blog/1309237394 Description Consider two natur...

poj 1845 Sumdiv

这是一个很好的数学题,题目的意思是:给你A^B让你求出A^B所有的约数和;用到的数学知识主要是约数和定理,刚开始做这个题目的时候没有一点思路,后来看了别人的题解,才知道有个约数和定理,知道的东西太少啦...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1845
举报原因:
原因补充:

(最多只允许输入30个字)