关闭

编译项目打包成so文件

CMake--C++代码打成.so包 1. 借助CMake打.so包  把目录utils下的文件打出.so包。 其中CMakeLists.txt内容: cmake_minimum_required(VERSION 2.8)aux_source_directory(. utils_src)add_library(utils SHARED ${utils_src})...
阅读(518) 评论(0)

chainer安装GPU版过程中的问题

1.UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 34: ordinal not in range(128) python的str默认是ascii编码,和unicode编码冲突.于是在/usr/lib/python2.7/dist-packages/pip/basecommand.py import...
阅读(1429) 评论(0)

caffe中base_lr、blobs_lr和lr_policy

caffe调整学习率的. base_lr是适用于所有层的学习率,而针对单个层,可以通过增加两个blobs_lr,用来调整该层的学习率. 一个调整weight的学习率,一个是调整偏执b的学习率。那么该层的学习率就变成了,base_lr*blobs_lr,base_lr*blobs_lr了。...
阅读(2867) 评论(0)

谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座

大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe。 没有太多准备,所以讲的不好的地方还请大家谅解。 我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:) 网页上应该还有一些Pytho...
阅读(314) 评论(0)

将train_val.prototxt 转换成deploy.prototxt

1.删除输入数据(如:type:data...inckude{phase: TRAIN}),然后添加一个数据维度描述。 input: "data" input_dim: 1 input_dim: 3 input_dim: 224 input_dim: 224 force_backward: true 2.移除最后的“loss” 和“accuracy” 层,加入“prob...
阅读(4355) 评论(1)

googlenet解析

原始数据是224*224*3 第一层卷积层 conv1 ,pad是3,7*7 ,64个特征,步长2,输出为 112*112*64。然后进行relu,经过pool1 进行pooling 3*3的核,步长为2, [(112 - 3+1)/2]+1 = 56  特征为56*56*64 , 再规范。 第二层卷积层 conv2, pad是1,3*3,192个特征,输出为56*56*192,然后进...
阅读(1382) 评论(1)

caffe的solverstate的使用

我们在使用caffe训练过程中会生成.caffemodel和.solverstate文件,一个是模型文件,一个是中间状态文件(生成多少个取决于你自己设定的snapshot)。当训练过程中断,你想继续运行数据学习,此时只需要调用.solverstate文件即可。 使用方式代码,我使用的是.sh直接运行,配置和官方给的文件train_caffenet.sh差不多,稍微添加点内容就可以了。 ./bu...
阅读(7269) 评论(0)

计算机视觉牛人博客和代码汇总

每个做过或者正在做研究工作的人都会关注一些自己认为有价值的、活跃的研究组和个人的主页,关注他们的主页有时候比盲目的去搜索一些论文有用多了,大牛的或者活跃的研究者主页往往提供了他们的最新研究线索,顺便还可八一下各位大牛的经历,对于我这样的小菜鸟来说最最实惠的是有时可以找到源码,很多时候光看论文是理不清思路的。 1 牛人Homepages(随意排序,不分先后): 1.USC Compute...
阅读(717) 评论(0)

任正非:不上市则有可能称霸世界 资本没有温度缺乏耐心

对于一个公司管理者,怎样包装自己都不过是伪饰,最终还是要看结果。无可非议,华为的公司制度让人惊叹,而这也是任正非的功劳体现。而追其华为的制度根本,还在于健康的发展与内在凝聚力。   核聚变效应:工者有其股 英国前首相丘吉尔在评价 20 世纪 40 年代的美国时,这样说:“美国像是一个巨大的锅炉,只要下面点着火,它就会产生无限的能量。”   的确,穿越大西洋抵达美洲的“五月花”号,...
阅读(354) 评论(0)

深度学习caffe的代码如何学习

1. 初识Caffe 1.1. Caffe相对与其他DL框架的优点和缺点: 优点: 速度快。Google Protocol Buffer数据标准为Caffe提升了效率。学术论文采用此模型较多。不确定是不是最多,但接触到的不少论文都与Caffe有关(R-CNN,DSN,最近还有人用Caffe实现LSTM) 缺点: 曾更新过重要函数接口。有人反映,偶尔会出现接口变换的情况,自己很久前...
阅读(575) 评论(0)

XGBoost的参数

一、在运行XGboost之前,必须设置的三种类型参数。 1.General parameters:一般参数。设定boosting过程中使用哪种booster,常用的booster有树模型(tree)和线性模型(linear model) booster [default=gbtree] 有两中模型可以选择gbtree和gblinear。(树模型-线性模型) silent [def...
阅读(496) 评论(0)

python用训练好的model分类

#coding=utf-8 #加载必要的库 import numpy as np import sys,os #import caffe #设置当前目录 caffe_root = '/mnt/caffe/' sys.path.insert(0, caffe_root + 'python') import caffe os.chdir(caffe_root) net_file=caffe_roo...
阅读(582) 评论(0)

大数据资源网站

政府&机构数据 美国政府开源数据库:http://www.data.gov/ 英国政府开源数据库:http://data.gov.uk/ 世界银行数据库:http://www.worldbank.org/ 美国气候数据库:http://www.ncdc.noaa.gov/ 美国交通部数据库:http://www.rita.dot.gov/bts/data_and_statisti...
阅读(236) 评论(0)

caffe调用已生成的模型

如上图 ,就是build/tools/caffe.bin文件,上图就有它的指令介绍。 在MNIST调用已经训练好的模型,测试。 这个测试,假定可能是新加入的测试集,还是按照原来的需求转换,存放数据到指定的位置。 ./build/tools/caffe.bin test -model=examples/mnist/lenet_train_test.prototxt -weights...
阅读(3002) 评论(0)

ubuntu15.04+caffe+cuda7.5+cudnnv4+mkl+opencv3

一、Linux的安装~ubuntu15.04(自带python2.7.11) apt-get update apt-get install git vim cmake automake 二、cuda7.5 获取CUDA安装包,安装包NVidia官网下载。(https://developer.nvidia.com/cuda-downloads) dpkg -i cuda-repo-ub...
阅读(594) 评论(0)
46条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:81033次
    • 积分:1117
    • 等级:
    • 排名:千里之外
    • 原创:28篇
    • 转载:18篇
    • 译文:0篇
    • 评论:6条
    文章分类
    最新评论