python用训练好的model分类
#coding=utf-8
#加载必要的库
import numpy as np
import sys,os
#import caffe
#设置当前目录
caffe_root = '/mnt/caffe/' 
sys.path.insert(0, caffe_root + 'python')
import caffe
os.chdir(caffe_root)

net_file=caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
caffe_model=caffe_root + 'data/ilsvrc12/bvlc_reference_caffenet.caffemodel'
mean_file=caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'

net = caffe.Net(net_file,caffe_model,caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
transformer.set_raw_scale('data', 255) 
transformer.set_channel_swap('data', (2,1,0))

im=caffe.io.load_image(caffe_root+'examples/images/cat.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data',im)
out = net.forward()


imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'
labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]
for i in np.arange(top_k.size):
    print top_k[i], labels[top_k[i]]


结果输出排名前五的图像概率。如图~

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wang4959520/article/details/51544546
个人分类: caffe
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

python用训练好的model分类

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭