关闭

Kibana User Guide [4.2] » Getting Started with Kibana

标签: elasticsearchKibana
496人阅读 评论(0) 收藏 举报
分类:

Getting Started with Kibana

开始使用Kibana

Now that you have Kibana installed, you can step through this tutorial to get fast hands-on experience with key Kibana functionality. By the end of this tutorial, you will have:

既然你已经安装了Kibana,你就可以继续学习接下来这个教程,通过它你可以快速得到Kibana关键功能的指导性经验。在教程的结尾,你讲得到:

  • Loaded a sample data set into your Elasticsearch installation
  • Defined at least one index pattern
  • Use the Discover functionality to explore your data
  • Set up some visualizations to graphically represent your data
  • Assembled visualizations into a Dashboard
  • 加载一个简单的数据集到ES装置
  • 定义至少一个索引样式
  • 使用 Discover 功能来检索数据
  • 设置一些可视化结果来生动地代表你的数据
  • 将可视化结果存入Dashboard

The material in this section assumes you have a working Kibana install connected to a working Elasticsearch install.

Video tutorials are also available:

这部分的资料假定你将一个工作的Kibana连接到一个工作的ES。

一些视频资料可以在下面得到:

Before You Start: Loading Sample Data

在开始前:下载样例数据
edit

The tutorials in this section rely on the following data sets:

这部分的教程依赖以下的数据集:

  • The complete works of William Shakespeare, suitably parsed into fields. Download this data set by clicking here: shakespeare.json.
  • 莎士比亚全集,被适当地分片。可以从这里下载数据:shakespeare.json
  • A set of fictitious accounts with randomly generated data. Download this data set by clicking here:accounts.zip
  • 随机生成数据的虚构账目数据集。可以从这里下载数据:accounts.zip
  • A set of randomly generated log files. Download this data set by clicking here: logs.jsonl.gz
  • 随机收集的日志文件数据集。可以从这里下载数据: logs.jsonl.gz

Two of the data sets are compressed. Use the following commands to extract the files:

两个数据集是压缩文件。使用下面的命令来解压文件:

unzip accounts.zip
gunzip logs.jsonl.gz

The Shakespeare data set is organized in the following schema:

莎士比亚数据集的数据是:

{
    "line_id": INT,
    "play_name": "String",
    "speech_number": INT,
    "line_number": "String",
    "speaker": "String",
    "text_entry": "String",
}

The accounts data set is organized in the following schema:

统计数据集的格式是:

{
    "account_number": INT,
    "balance": INT,
    "firstname": "String",
    "lastname": "String",
    "age": INT,
    "gender": "M or F",
    "address": "String",
    "employer": "String",
    "email": "String",
    "city": "String",
    "state": "String"
}

The schema for the logs data set has dozens of different fields, but the notable ones used in this tutorial are:

日志数据集有不同的分块,但是在这片教程中,使用的一个很有名的是:

{
    "memory": INT,
    "geo.coordinates": "geo_point"
    "@timestamp": "date"
}

在我们加载莎士比亚数据集之前,我们需要设置块的映射。映射把索引中的文件划分成逻辑组,而且确定分块的特性,例如分块的搜索能力,无论它是否是标记化的,或者是被分成独立的单词。

使用下面的命令,来设置对莎士比亚数据集的映射:

Before we load the Shakespeare data set, we need to set up a mapping for the fields. Mapping divides the documents in the index into logical groups and specifies a field’s characteristics, such as the field’s searchability or whether or not it’s tokenized, or broken up into separate words.

Use the following command to set up a mapping for the Shakespeare data set:

curl -XPUT http://localhost:9200/shakespeare -d '
{
 "mappings" : {
  "_default_" : {
   "properties" : {
    "speaker" : {"type": "string", "index" : "not_analyzed" },
    "play_name" : {"type": "string", "index" : "not_analyzed" },
    "line_id" : { "type" : "integer" },
    "speech_number" : { "type" : "integer" }
   }
  }
 }
}
';

This mapping specifies the following qualities for the data set:

映射为数据集确定了下面的特性:

  • The speaker field is a string that isn’t analyzed. The string in this field is treated as a single unit, even if there are multiple words in the field.
  • speaker块是一个不被分析的串。在这个分块的字符串被当成简单的单元,即使有很多单词在这个块中。
  • The same applies to the play_name field.
  • 对于play_name块的同样应用。
  • The line_id and speech_number fields are integers.
  • line_id 和 speech_number块是整形。

The logs data set requires a mapping to label the latitude/longitude pairs in the logs as geographic locations by applying the geo_point type to those fields。

日志数据的数据集需要一个映射,来在日志中标记经纬度作为地理位置,应用方法是在这些块中使用geo_point类型。

Use the following commands to establish geo_point mapping for the logs:

使用下面的命令为日志来建立geo_point映射:

curl -XPUT http://localhost:9200/logstash-2015.05.18 -d '
{
  "mappings": {
    "log": {
      "properties": {
        "geo": {
          "properties": {
            "coordinates": {
              "type": "geo_point"
            }
          }
        }
      }
    }
  }
}
';
curl -XPUT http://localhost:9200/logstash-2015.05.19 -d '
{
  "mappings": {
    "log": {
      "properties": {
        "geo": {
          "properties": {
            "coordinates": {
              "type": "geo_point"
            }
          }
        }
      }
    }
  }
}
';
curl -XPUT http://localhost:9200/logstash-2015.05.20 -d '
{
  "mappings": {
    "log": {
      "properties": {
        "geo": {
          "properties": {
            "coordinates": {
              "type": "geo_point"
            }
          }
        }
      }
    }
  }
}
';

The accounts data set doesn’t require any mappings, so at this point we’re ready to use the Elasticsearchbulk API to load the data sets with the following commands:

账目数据集不需要映射,所以,此时,我们准备好使用ES bulk API来加载数据集,用到的命令在下面。

curl -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary @accounts.json
curl -XPOST 'localhost:9200/shakespeare/_bulk?pretty' --data-binary @shakespeare.json
curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary @logs.jsonl

These commands may take some time to execute, depending on the computing resources available.

Verify successful loading with the following command:

这些命令的执行可能会耽误些时间,依赖于计算的资源是否可以得到。

使用下面的命令进行加载,被证实成功过。

curl 'localhost:9200/_cat/indices?v'

You should see output similar to the following:

你看到了输出结果应该和下面类似:

health status index               pri rep docs.count docs.deleted store.size pri.store.size
yellow open   bank                  5   1       1000            0    418.2kb        418.2kb
yellow open   shakespeare           5   1     111396            0     17.6mb         17.6mb
yellow open   logstash-2015.05.18   5   1       4631            0     15.6mb         15.6mb
yellow open   logstash-2015.05.19   5   1       4624            0     15.7mb         15.7mb
yellow open   logstash-2015.05.20   5   1       4750            0     16.4mb         16.4mb


备注:

材料来自elastic官网。

地址:

https://www.elastic.co/guide/en/kibana/current/getting-started.html


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:539780次
    • 积分:7542
    • 等级:
    • 排名:第3169名
    • 原创:115篇
    • 转载:414篇
    • 译文:37篇
    • 评论:30条
    文章分类