关闭

cf295b

43人阅读 评论(0) 收藏 举报
B. Greg and Graph
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Greg has a weighed directed graph, consisting of n vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game:

  • The game consists of n steps.
  • On the i-th step Greg removes vertex number xi from the graph. As Greg removes a vertex, he also removes all the edges that go in and out of this vertex.
  • Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume that d(i, v, u) is the shortest path between vertices v and u in the graph that formed before deleting vertex xi, then Greg wants to know the value of the following sum: .

Help Greg, print the value of the required sum before each step.

Input

The first line contains integer n (1 ≤ n ≤ 500) — the number of vertices in the graph.

Next n lines contain n integers each — the graph adjacency matrix: the j-th number in the i-th line aij (1 ≤ aij ≤ 105, aii = 0) represents the weight of the edge that goes from vertex i to vertex j.

The next line contains n distinct integers: x1, x2, ..., xn (1 ≤ xi ≤ n) — the vertices that Greg deletes.

Output

Print n integers — the i-th number equals the required sum before the i-th step.

Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cincout streams of the %I64dspecifier.

Examples
input
1
0
1
output
0 
input
2
0 5
4 0
1 2
output
9 0 
input
4
0 3 1 1
6 0 400 1
2 4 0 1
1 1 1 0
4 1 2 3
output

17 23 404 0

来到floyd—warshall

#include<bits/stdc++.h>
using namespace std;
int x[505];
int a[505];
__int64 dp[505][505];
int n;
__int64 res[505];
int vis[505];
void floyd()
{
    int cot=1;
    int g=n;
    for(int k=1;k<=n;k++)
    {
        __int64 ans=0;
        vis[a[k]]=1;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j]=min(dp[i][j],dp[i][a[k]]+dp[a[k]][j]);
                if(vis[i]&&vis[j])
                {
                    ans+=dp[i][j];
                }
            }
        }
        res[g--]=ans;


    }
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            scanf("%I64d",&dp[i][j]);
        }
    }
    for(int i=n;i>=1;i--)
    {
        scanf("%d",&a[i]);
    }
    floyd();
    for(int i=1;i<n;i++)
    {
        printf("%I64d ",res[i]);
    }
    printf("%I64d\n",res[n]);
    return 0;
}

挺经典

解析:

从后往前用每个点依次去松弛

因为从最后一个点去松弛,然后在用倒数第二个点去松弛,假设现在就有两个点,那末所有最短路就是倒数第一个点加上倒数第二个点的所有最短路径,再用倒数第三个点去松弛,这时候就相当于只有三个点,把这三个点两两最短路相加,再用倒数第四个点去松弛,这就相当于只有四个点,相加最短路,再用倒数第五个点去松弛,这就相当于有五个点!

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:647次
    • 积分:83
    • 等级:
    • 排名:千里之外
    • 原创:7篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条