关闭

cf567c

27人阅读 评论(0) 收藏 举报
C. Geometric Progression
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

Examples
input
5 2
1 1 2 2 4
output
4
input
3 1
1 1 1
output
1
input
10 3
1 2 6 2 3 6 9 18 3 9
output
6
Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

#include<string>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
#include<stdio.h>
#include<map>
using namespace std;
const __int64 N=1e6;
int main()
{
    __int64 n,k,t,ans;
    string a;
    while(scanf("%I64d%I64d",&n,&k)!=EOF)
    {
        map<__int64,__int64>s1,s2;
        ans=0;
        for(__int64 i=0;i<n;i++)
        {
            scanf("%I64d",&t);
            if(t%(k*k)==0)
            {
                ans+=(s1[t/k]);
            }
            if(t%k==0)
            {
                s1[t]+=s2[t/k];
            }
            s2[t]++;
        }
        cout<<ans<<endl;
    }
    return 0;
}

递归思想

如果一个字出现一次就加一,后面的是它的倍数,那么后面的数就是前面那背的书,又出现一个相同的数,还是前面的背数的数,最后如果是那个数的倍数,就是说够三个数了,那就是前面所有的那个数相加

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:559次
    • 积分:83
    • 等级:
    • 排名:千里之外
    • 原创:7篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条