cf567c

原创 2016年06月01日 12:04:37
C. Geometric Progression
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

Examples
input
5 2
1 1 2 2 4
output
4
input
3 1
1 1 1
output
1
input
10 3
1 2 6 2 3 6 9 18 3 9
output
6
Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

#include<string>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
#include<stdio.h>
#include<map>
using namespace std;
const __int64 N=1e6;
int main()
{
    __int64 n,k,t,ans;
    string a;
    while(scanf("%I64d%I64d",&n,&k)!=EOF)
    {
        map<__int64,__int64>s1,s2;
        ans=0;
        for(__int64 i=0;i<n;i++)
        {
            scanf("%I64d",&t);
            if(t%(k*k)==0)
            {
                ans+=(s1[t/k]);
            }
            if(t%k==0)
            {
                s1[t]+=s2[t/k];
            }
            s2[t]++;
        }
        cout<<ans<<endl;
    }
    return 0;
}

递归思想

如果一个字出现一次就加一,后面的是它的倍数,那么后面的数就是前面那背的书,又出现一个相同的数,还是前面的背数的数,最后如果是那个数的倍数,就是说够三个数了,那就是前面所有的那个数相加

版权声明:本文为博主原创文章,未经博主允许不得转载。

CF-567C - Geometric Progression

C. Geometric Progression time limit per test 1 second memory limit per test 256 megabytes inpu...
  • xfzero
  • xfzero
  • 2015年08月06日 04:52
  • 240

cf 567 c

C. Geometric Progression time limit per test 1 second memory limit per test 256 megabytes inpu...
  • DoJintian
  • DoJintian
  • 2015年08月15日 16:19
  • 618

CF 567C. Geometric Progression

题目链接题意:给出一个序列,求公比为k,且长度为3的子等比序列个数。(1 ≤ n, k ≤ 2e5)( - 1e9 ≤ ai ≤ 1e9) #解法: dp[0][x]表示当前x的数量。 dp[...
  • yskyskyer123
  • yskyskyer123
  • 2016年09月24日 09:59
  • 256

【打CF,学算法——三星级】CodeForces 567D One-Dimensional Battle Ships (二分)

题目链接:CF 567D 题面: D. One-Dimensional Battle Ships time limit per test 1 second memory limit per...
  • David_Jett
  • David_Jett
  • 2016年07月09日 10:42
  • 659

CodeForces 567C Geometric Progression【思维+map】

题目描述 Polycarp loves geometric progressions very much. Since he was only three years old, he loves ...
  • mengxiang000000
  • mengxiang000000
  • 2017年01月09日 20:59
  • 177

CodeForces 567C Case of Matryoshkas map+递推

原题: http://codeforces.com/contest/556/problem/C题目:Case of Matryoshkas time limit per test2 seconds...
  • qq_27508477
  • qq_27508477
  • 2015年08月06日 10:25
  • 456

dbisam 4.02 c/s src for d567

  • 2006年02月23日 09:05
  • 1.12MB
  • 下载

QuickReport 4.04 profesional for D567C56

  • 2006年02月23日 09:05
  • 5.84MB
  • 下载

C9020-567 V8.02

  • 2017年08月08日 17:27
  • 234KB
  • 下载

STM32+cf7606c-v2液晶实时显示

  • 2017年03月30日 23:19
  • 6.5MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:cf567c
举报原因:
原因补充:

(最多只允许输入30个字)