题意:日本岛东海岸与西海岸分别有N和M个城市,现在修高速公路连接东西海岸的城市,求交点个数。
做法:记每条告诉公路为(x,y), 即东岸的第x个城市与西岸的第y个城市修一条路。当两条路有交点时,满足(x1-x2)*(y1-y2) < 0。所以,将每条路按x从小到达排序,若x相同,按y从小到大排序。 然后按排序后的公路用树状数组在线更新,求y的逆序数之 和 即为交点个数。
上面说的可能有点难理解,详细说明如下。
记第i条边的端点分别为xi,yi。
由于x是从小到大排序的,假设当前我们在处理第k条边,那么第1~k-1条边的x必然是小于(等于时候暂且不讨论)第k条边的 x 的,那么前k-1条边中,与第k条边相交的边的y值必然大于yk的,所以此时我们只需要求出在前k-1条边中有多少条边的y值在区间[yk, M]即可,也就是求yk的逆序数,M为西岸城市个数,即y的最大值。 所以就将问题转化成区间求和的问题,树状数组解决。当两条边的x相同时,我们记这两条边

该博客介绍了如何利用树状数组解决一个数学问题,即在日本东西海岸修建高速公路时,计算所有可能的交点数量。通过排序和在线更新,通过计算每个城市的逆序数来确定交点个数,将问题转化为区间求和问题并用树状数组进行高效解决。
最低0.47元/天 解锁文章
746

被折叠的 条评论
为什么被折叠?



