关于“智能革命”的分析与思考

原创 2017年07月19日 09:36:32
如果将人类和机器看做碳基和硅基的两种“生物”,我们会发现本质上二者是并列关系。哥白尼的日心说证明了地球和其他星球的同等地位,达尔文的自然选择证明了人类和其他生物的同等地位,弗洛伊德的精神分析证明了人类意识与生化反应的同等地位,我们人类在科学的探索下正在逐步走下神坛,被观测到其本质,也许未来,我们会在人工智能领域的探索中发现人类与机器的同等地位,届时人类与机器将协同合作,共同建设美好的地球家园。

1 人工智能历程与现状

2016年3月12日,由DeepMind公司带来的基于深度学习算法的智能机器人AlphaGo,以4:1战胜李世石九段,标志着人工智能正式开始进入大众视野。而16年年底,Master横扫人类60局不败,我们可以看出,人工智能已经在极快的时间内,在部分领域远远超过人类水平。霍金曾说:“人工智能的成功将会是人类历史上最重大的事件。”
1956年,美国达特茅斯会议提出“人工智能”概念,此后几十年里,人工智能随着感知器,神经网络,支持向量机等理论的提出,一直在不愠不火的发展中,然而终究没有迎来爆发式的发展,这是因为缺乏两个必要条件——数据和硬件。随着信息革命的发展和成熟,无数的互联网公司为我们带来了海量的数据,在摩尔定律的不断印证下,计算能力得到飞跃。这两个条件成熟后,以2012年爆发的深度学习技术为代表,相关的一系列技术开始渐渐崭露头角,很快就在智能机器人控制,专家系统,图像识别,语音识别,自然语言处理等领域大放异彩。

2.历次产业革命的共性与特性

人工智能之所以能够被称为与蒸汽革命,电力革命,信息革命地位相当的“智能革命”,是因为从历史维度看来,它与前三次革命有着本质上的共性:以科学发明为标志,广泛应用于人类生活,大幅度提高生产力,引发产业结构,社会体系,全球政治经济格局甚至社会文化价值观的深刻变化。除此之外,我们还应该注意到,每次的产业革命都会让人类社会出现前所未有的新特征,且前一次产业革命为后一次产业革命提供了基础条件。
第一次工业革命诞生于17世纪,蒸汽机的出现,带动了生产效率的大幅提高,机器的效率远远超过人力,此外技能的概念和创新的概念比以往更加明显。技能是人类利用工具进行生产所需要的技术,是一种提高生产力的行为,而创新可以被认为是一种抽象的能提高生产力的行为。工业时代能源的开采都借助机器进行,技能劳动大量代替了体力劳动,人类的大量体力劳动得到解放。
电力革命以电能的使用为标志,电能的发明相比之前的燃料能源,有着更广泛的应用场景,且能够远传,促进了能源的资源分配。电力革命带来了弱电技术的发展,从而带动了电子工业产业的蓬勃发展。电能由燃料能源转化而来,因此第一次工业革命是第二次工业革命的基础。电力革命与蒸汽革命又有着完全不同的特征,即科学技术的依赖程度明显增高,学科交叉,行业跨界开始逐步出现。
信息革命以计算机,集成电路,互联网的出现为基础,打通了整个世界的连接网络,促进了信息的高速流通。这并不是一场能源革命,而更多的点在于提高效率上。计算机和芯片的出现提高了计算效率,互联网的出现提高了信息流通的效率。此外,信息革命基于弱电技术的发展,因此仍然具有以上一次革命为基础的特点。
这其中有两个关键词:效率,以及创新。创新能够提高效率,而创新的发起者是人。技能和创新都能够提高效率,而后者提高的幅度更大,技能成倍的提高生产力,而创新成倍的提高技能。当体力劳动比例下降,从事技能工作和创新工作的人比例增高时,生产力能够更快速的提高。电力革命以来,生产自动化开始逐步出现,直至信息时代计算机的出现,带动了控制论等一系列学科的发展,促进了生产自动化的的大量应用,让机器逐步开始进行技能劳动,解放更多的人进行创新劳动。
综合以上分析,本文认为新一代产业革命应有以下几个特点:1.它基于信息革命后期的主要成果,如互联网和新一代计算技术。2.它能够更大幅度的解放技能劳动,让人类更大幅度的从事创新劳动。3.他应具有前几次产业革命的共性,如以科学发明为标志,对生产生活造成深刻影响,且出现前所未有的新特征。 

3.人工智能与历次产业革命的异同

从PC互联网到移动互联网再到今天的物联网,产生最有价值且不同于以往任何一场产业革命的东西,毫无疑问是数据。信息行业的发展伴随着计算机存储技术的不断提高,能够存储的数据量不断提升,到现在已经达到难以想象的地步。举例来说,滴滴出行每天处理2000TB的数据,路径规划90亿次,定位130亿次。在移动互联网刚刚出现的一两年内,大数据分析已成为行业内的热门议题,无数的公司希望从移动互联网产生的海量数据中挖掘出有价值的信息,并转化成促进产品优化的有效决策,形成价值链的闭环。
根据摩尔定律,2045年每1000美元可以买到的计算资源就几乎等于今天人脑的计算能力,而摩尔定律目前已有放缓的趋势,计算能力的提升不再仅限于芯片上晶体管的数目,而是架构的改进。此外,云计算技术的广泛应用,为大规模的数据处理提供了条件。
海量数据和计算能力作为信息革命为下一代革命打造的基础,无疑成就了人工智能行业。众所周知,目前人工智能最重要的三个因素即算法,计算能力(硬件)和大数据。深度学习算法在数据集规模较小的情况下效果并不好,但是一旦有了大规模的数据集,就能达到惊人的效果。举例来说,深度学习算法在2012年得到广泛应用,2011年计算机对于图像的分类只能达到准确度75%,但如今已达到99.7%,超过了人类99.1%的识别率,这主要是归功于计算能力和海量图像数据产生的训练集。此外,GPU的广泛使用,适用边缘计算的新的硬件架构,满足了大规模数据集的训练所需的计算要求。
上文提到,新一代产业革命应大幅度解放生产力,电力革命和信息革命带来的生产自动化的发展,已经极大地解放了体力劳动,人类多从事技能劳动和创新劳动,而智能革命带来的则是对技能劳动的解放。目前,弱人工智能已经在多个行业和领域得到广泛使用,这些产品促进了生产,生活的“智能化”,很多工作不需要人脑去控制和协助,就能自主完成,而且,重复性强,创造性低的技能劳动,已经越来越多的可以交由弱人工智能去完成。这使得大量的人类智能可以去从事创新劳动,这是提升效率最高的一种劳动,从而释放出大量的创新力量,这无疑在日后会极大地促进生产力提高。
人类步入信息社会后,不仅温饱需求,社交需求得到解决,还可以利用互联网提供的平台,通过自我表达自我的体验,自由的将自己展示在亿万网民面前,成为所谓的“网红”,满足尊重需求和自我实现需求。人类已经极大程度上避免了饥荒,瘟疫和战争,接下来,由人类过去的记录和现有价值观来看,未来的追求很可能停留在“长生不死,快乐幸福以及化身为神”。其中基因工程的发展有望在本世纪末让人类寿命达到120-150岁,快乐幸福的定义至今很难探明。
将人类智能分为感知,认知,创造力和智慧,目前人工智能已经超越了人类感知和部分人类认知,将弱人工智能和人类智能结合,强化人类的某些特定能力,是人类“化身为神”的发展方向。这是在前三次产业革命从未出现过的,人类前所未有的新特征。
综上所述,人工智能与三次产业革命具有相同的特点,继承信息革命留下的宝贵财富——大数据和计算能力,极大地提高生产力,使人类达到“AI+HI”的新形态,无疑是可与三次产业革命并称的“智能革命”。

4.新时代人工智能发展方向的思考

关于未来的发展方向,本身是极难预测的,目前业界人士大多认为人工智能将代替人类50%以上的重复性工作,从事创新性工作的人类受到的威胁相对较小,但是这个结论将在多少年后得到验证,谁都无法给出一个确定的区间。关于人工智能是否能够具有人类意识,当今业界人士也是众说纷纭,没有定论。
生物圈II号的历史表明,人类想要打造一个闭环的生态系统,十分重要的一点是要充分利用自然选择的力量,充分利用扰动的力量,越是动态平衡的系统越趋于平静,越是不受控制的系统越能够发挥自然选择的力量,受到扰动然后归于平衡,不断地在这一过程中增强系统的多样性和复杂性。借鉴盖亚理论和生物圈II号的启示,想要从弱人工智能到通用人工智能,应该建立更加具有“失控”特征的模型,因为人类这一系统在一生中,早已适应了“扰动-平衡”的环境,而机器算法想要达到人类大脑的运作逻辑,就应该模拟这种环境,借助自然的循环和调节达到非平衡中的“平衡”,从而演化出我们人类无法理解,但又真真正正存在于我们大脑中的内在逻辑与结构。   
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

智能家庭网络的革命时代已经来临

现在一般家庭用Wi-Fi路由器将智能电视、游戏机、电视调谐器,以及手机和平板电脑等诸多数字设备与互联网连接,串流在线视频(图1),而且这种媒体流已经不仅仅局限于客厅了。随着家庭成员需要连接到家里的其他...

智能手机创新不见革命 只见气息

很多时候,我们只是反复刷着屏幕,拉拉菜单,更新着略显无聊的微博,输入几段文字,偶尔玩玩弱智的游戏。智能手机并没有真正改变你的生活,除了我们的视力。   相信许多人已看到,过去6个月,苹果市值一度缩水...

(转)智能金融起锚:文因、数库、通联瞄准的kensho革命

2015年9月13日,39岁的鲍捷乘上从硅谷至北京的飞机,开启了他心中的金融梦想。

智能泛滥,苹果能否凭ITV再酿革命?

革命?这事儿还是交给苹果吧,我们等着跟风就行了…   一些有路子的消息人士:苹果想要进军电视行业,并且会在圣诞节前推出ITV... 在新品正式发布前,我们有权利将这些消息人士的可靠消息看做是谣传或...

读书:智能时代 - 大数据与智能革命重新定义未来

之前发过一次,但不知怎么的,那篇文章没了。重新整理了下,重发一次。 我在逻辑思维上买的 吴军 的新书:《智能时代 - 大数据与智能革命重新定义未来》到了。花了近一天时间,一口气读完了。感觉书还是不错的...

第四次零售革命离不开零售大数据分析

零售业已经不是传统观念上的卖东西。电商巨头马云提出“新零售”的概念之后,又有人大动作了。那这次又是哪位“大佬”呢?《财经》杂志日前发表了《第四次零售革命》的新观念,来自京东的刘强东,他称,未来,将袭来...

视频分析的“新革命”——久凌视频分析产品

深圳久凌的视频分析技术填补了全球视频分析领域的一个空白。当前我国各地纷纷投入巨资,打造天网工程,建设平安城市。成千上万的监控摄像头极大提高了社会治安案件的侦破率。 视频监控的作用毋庸置疑。遍布大街小巷...

(CUDA 编程1).CUDA 线程执行模型分析(一)招兵 ------ GPU的革命

(CUDA 编程1).CUDA 线程执行模型分析(一)招兵 ------ GPU的革命 作者:赵开勇 来源:http://www.hpctech.com/2009/0818/198.html ...

CUDA 线程执行模型分析(一)招兵------ GPU的革命

CUDA 线程执行模型分析(一)招兵 ------ GPU的革命  序:或许看到下面的内容的时候,你会觉得和传统的讲解线程,和一些讲解计算机的书的内容不是很相同。我倒觉得有关计算机,编程这些方面...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)