【Hadoop】HDFS的运行原理

原创 2013年11月26日 16:58:29

简介

HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。是根据google发表的论文翻版的。论文为GFS(Google File System)Google 文件系统(中文英文)。

HDFS有很多特点

    ① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。

    ② 运行在廉价的机器上。

    ③ 适合大数据的处理。多大?多小?HDFS默认会将文件分割成block,64M为1个block。然后将block按键值对存储在HDFS上,并将键值对的映射存到内存中。如果小文件太多,那内存的负担会很重。

如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。

NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;

SecondaryNameNode:是一个小弟,分担大哥namenode的工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。

DataNode:Slave节点,奴隶,干活的。负责存储client发来的数据块block;执行数据块的读写操作。

热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。

冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。

fsimage:元数据镜像文件(文件系统的目录树。)

edits:元数据的操作日志(针对文件系统做的修改操作记录)

namenode内存中存储的是=fsimage+edits。

SecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。

 


 

工作原理

写操作:

有一个文件FileA,100M大小。Client将FileA写入到HDFS上。

HDFS按默认配置。

HDFS分布在三个机架上Rack1,Rack2,Rack3。

 

a. Client将FileA按64M分块。分成两块,block1和Block2;

b. Client向nameNode发送写数据请求,如图蓝色虚线------>

c. NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线--------->

    Block1: host2,host1,host3

    Block2: host7,host8,host4

    原理:

        NameNode具有RackAware机架感知功能,这个可以配置。

        若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。

        若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。

d. client向DataNode发送block1;发送过程是以流式写入。

    流式写入过程,

        1>将64M的block1按64k的package划分;

        2>然后将第一个package发送给host2;

        3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;

        4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。

        5>以此类推,如图红线实线所示,直到将block1发送完毕。

        6>host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图粉红颜色实线所示。

        7>client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图黄色粗实线

        8>发送完block1后,再向host7,host8,host4发送block2,如图蓝色实线所示。

        9>发送完block2后,host7,host8,host4向NameNode,host7向Client发送通知,如图浅绿色实线所示。

        10>client向NameNode发送消息,说我写完了,如图黄色粗实线。。。这样就完毕了。

分析,通过写过程,我们可以了解到:

    写1T文件,我们需要3T的存储,3T的网络流量贷款。

    在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。

    挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。

 

读操作:

 

读操作就简单一些了,如图所示,client要从datanode上,读取FileA。而FileA由block1和block2组成。 

 

那么,读操作流程为:

a. client向namenode发送读请求。

b. namenode查看Metadata信息,返回fileA的block的位置。

    block1:host2,host1,host3

    block2:host7,host8,host4

c. block的位置是有先后顺序的,先读block1,再读block2。而且block1去host2上读取;然后block2,去host7上读取;

 

上面例子中,client位于机架外,那么如果client位于机架内某个DataNode上,例如,client是host6。那么读取的时候,遵循的规律是:

优选读取本机架上的数据

 


HDFS中常用到的命令

1、hadoop fs

hadoop fs -ls /
hadoop fs -lsr
hadoop fs -mkdir /user/hadoop
hadoop fs -put a.txt /user/hadoop/
hadoop fs -get /user/hadoop/a.txt /
hadoop fs -cp src dst
hadoop fs -mv src dst
hadoop fs -cat /user/hadoop/a.txt
hadoop fs -rm /user/hadoop/a.txt
hadoop fs -rmr /user/hadoop/a.txt
hadoop fs -text /user/hadoop/a.txt
hadoop fs -copyFromLocal localsrc dst 与hadoop fs -put功能类似。
hadoop fs -moveFromLocal localsrc dst 将本地文件上传到hdfs,同时删除本地文件。

2、hadoop fsadmin 

hadoop dfsadmin -report
hadoop dfsadmin -safemode enter | leave | get | wait
hadoop dfsadmin -setBalancerBandwidth 1000

3、hadoop fsck

4、start-balancer.sh

到博客园浏览:http://www.cnblogs.com/laov/p/3434917.html

版权声明:本文为博主原创文章,未经博主允许不得转载。

Hadoop 原理总结

一、Hadoop技术原理 Hdfs主要模块:NameNode、DataNode Yarn主要模块:ResourceManager、NodeManager 常用命令: 1)用hadoop fs ...
  • yywusuoweile
  • yywusuoweile
  • 2015年08月15日 13:51
  • 3824

Hadoop运行原理详解

我们通过下面这个天气数据处理的例子来说明Hadoop的运行原理. 1、Map-Reduce的逻辑过程 假设我们需要处理一批有关天气的数据,其格式如下: 按照ASCII码存储,每行一条记录 每...
  • yclzh0522
  • yclzh0522
  • 2011年10月10日 16:42
  • 30758

Hadoop Shuffle运行原理

Shufflehadoop的核心思想是MapReduce,而MapReduce的核心思想又是Shuffle。shuffle的主要工作是从Map结束到Reduce开始之间的过程,所以了解shuffle的...
  • StromCruise
  • StromCruise
  • 2017年05月17日 11:50
  • 325

Hadoop -- HDFS 原理、架构与特性介绍

阅读目录 1:当前HDFS架构详尽分析 2:HDFS文件读取的解析 3:HDFS文件写入的解析 4:副本机制 5:HDFS负载均衡 6:HDFS机架感知 7:HDFS访问   8:HDFS 健壮...
  • shineHoo
  • shineHoo
  • 2015年07月16日 15:10
  • 2086

Hadoop 之MapReduce 运行原理全解析

转自:http://blog.csdn.net/yclzh0522/article/details/6859778  我们通过下面这个天气数据处理的例子来说明Hadoop的运行原理. 1、...
  • xuanjiewu
  • xuanjiewu
  • 2016年01月22日 17:01
  • 1022

Hadoop_HA原理

总体上说, Hadoop 2.0 中的HDFS 和YARN 均采用了基于共享存储的HA 解决方案,即Active Master 不断将信息写入一个共享存储系统, 而Standby Master 则不断...
  • Regan_Hoo
  • Regan_Hoo
  • 2017年12月14日 14:18
  • 214

Hadoop技术原理总结

业界常见的数据挖掘软件介绍 一、主要介绍12种 1.传统的数据挖掘套件(Classic suites): SAS Enterprise Miner 5.3 SPSS Clementine 12   ...
  • zolalad
  • zolalad
  • 2013年09月12日 10:09
  • 4407

Hadoop架构设计、运行原理详解

1、Map-Reduce的逻辑过程 假设我们需要处理一批有关天气的数据,其格式如下: 按照ASCII码存储,每行一条记录每一行字符从0开始计数,第15个到第18个字符为年第25个到第29个字符...
  • u011340807
  • u011340807
  • 2014年04月28日 11:34
  • 2487

一篇很好的Hadoop入门文章:Hadoop是什么、核心HDFS与MapReduce的原理

Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身。 《Hadoop基础教程》是我...
  • zhangliangzi
  • zhangliangzi
  • 2016年07月30日 10:12
  • 3874

Hadoop基本知识,(以及MR编程原理)

1,一个map可能在多个节点上运行:     如果map运行过慢,就会在别的节点上重开一个,两个谁先跑完就取谁的结果,然后杀掉另一个。   2,如果有百个节点左右的集群想要做hadoop版本升级,有...
  • longshenlmj
  • longshenlmj
  • 2013年12月09日 16:09
  • 2461
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【Hadoop】HDFS的运行原理
举报原因:
原因补充:

(最多只允许输入30个字)