【第21期】观点:人工智能到底用 GPU?还是用 FPGA?

HDU 2874 Connections between cities(LCA离线算法)

原创 2015年11月20日 16:57:39

该题用离线算法的时候要注意会MLE, 内存卡的很紧, 所以要想办法优化内存, 利用存储边的数组就行了。 

LCA是利用了并查集在树上进行的操作, 由于该题可能不形成一棵树,所以要对所有子树进行LCA。 然后不在一个集合中的两个点不能联通。

下面简单说一下我对LCA的理解: LCA就是dfs+并查集优化。   用dfs深搜, 当其回溯到结点u时, u的子树已经全部搜寻完了, 并且用并查集将其子树合并到了一个集合之中。  这时, 其子树的最近公共祖先就是当前结点u。   当然,其实我们也可以省略掉数组ancestor, 直接将最近公共祖先这个信息维护成并查集的根。

细节参见代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 10000+5;
const int maxq = 1000000+5;
int n,u,m,v,dist[maxn],k,answer[maxq],f[maxn],h[maxn],tt,q,head[maxn],tot;
int _find(int x) { return f[x] == x ? x : f[x] = _find(f[x]); }
void bing(int u, int v) {
    int t1 = _find(u);
    int t2 = _find(v);
    if(t1 != t2) f[t1] = t2;
}
bool vis[maxn];
struct Edge {
    int to, next, dist;
}edge[maxn*2];
void addedge(int u, int v, ll dist) {
    edge[tot].to = v;
    edge[tot].dist = dist;
    edge[tot].next = head[u];
    head[u] = tot++;
}
struct Query {
    int q, next, index;
}query[maxq*2];
void add_query(int u, int v, int index) {
    query[tt].q = v;
    query[tt].next = h[u];
    query[tt].index = index;
    h[u] = tt++;
    query[tt].q = u;
    query[tt].next = h[v];
    query[tt].index = index;
    h[v] = tt++;
}
void init() {
    tot = tt = 0;
    for(int i=1;i<=n;i++) {
        h[i] = head[i] = -1;
        f[i] = i;
        vis[i] = false;
    }
}
void LCA(int u) {
    vis[u] = true;
    for(int i = head[u]; i != -1; i = edge[i].next) {
        int v = edge[i].to;
        if(vis[v]) continue;
        dist[v] = dist[u] + edge[i].dist;
        LCA(v);
        bing(v, u);
    }
    for(int i = h[u]; i != -1; i = query[i].next) {
        int v = query[i].q;
        if(vis[v]) {
            answer[query[i].index] = _find(v);
        }
    }
}
int main() {
    while(~scanf("%d%d%d",&n,&m,&q)) {
        init();
        for(int i=0;i<m;i++) {
            scanf("%d%d%d",&u,&v,&k);
            addedge(u, v, k);
            addedge(v, u, k);
        }
        for(int i=0;i<q;i++) {
            scanf("%d%d",&u,&v);
            add_query(u,v,i);
        }
        for(int i=1;i<=n;i++) {
            if(!vis[i]) {
                dist[i] = 0;
                LCA(i);
            }
        }
        for(int i=0;i<2*q;i+=2) {
            u = _find(query[i+1].q); v = _find(query[i].q);
            if(u != v) printf("Not connected\n");
            else printf("%d\n",dist[query[i+1].q]-dist[answer[i/2]]+dist[query[i].q]-dist[answer[i/2]]);
        }
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

【线段树+离散化+离线方法】杭电 hdu 3333 Turing Tree

/* THE PROGRAM IS MADE BY PYY */ /*----------------------------------------------------------------------------// Copyright (c) 2012 panyanyany All rights reserved. URL : http://acm.hdu.edu.cn/showproblem.php?pid=3333 Name : 3333 Turi

HDU 2874 - Connections between cities(LCA‘离线算法Tarjan)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意:n个点m条边的森林,c个询问,求出两个点的最短路径,若不连接则输出 Not connected...

欢迎关注CSDN程序人生公众号

关注程序员生活,汇聚开发轶事。

Connections between cities(LCA + 并查集)

Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot

hdu2874 Connections between cities (LCA离线)

Connections between citiesTime Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja...

POJ 2874 LCA 树上任意两点距离

本题说了是无环图,所以就是一片森林了。 而对于树上的任意两点,我们可以用LCA求其距离。距离为两个子节点到根的距离和减去最近祖先到根的距离的2倍。具体画图便可看出来。 并且图是无向图,所以LCA时需要进行标记 POJ 1986同这道题 基本一样 /* ID: CUGB-wwj PROG: LANG: C++ */ #include &lt;iostream&gt; #include &lt;vector&gt; #include &lt;list&gt; #includ
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)