Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗

转载 2017年07月25日 10:53:44

网站日志分析项目案例(一)项目介绍:http://www.cnblogs.com/edisonchou/p/4449082.html

网站日志分析项目案例(二)数据清洗:当前页面

网站日志分析项目案例(三)统计分析:http://www.cnblogs.com/edisonchou/p/4464349.html

一、数据情况分析

1.1 数据情况回顾

  该论坛数据有两部分:

  (1)历史数据约56GB,统计到2012-05-29。这也说明,在2012-05-29之前,日志文件都在一个文件里边,采用了追加写入的方式。

  (2)自2013-05-30起,每天生成一个数据文件,约150MB左右。这也说明,从2013-05-30之后,日志文件不再是在一个文件里边。

  图1展示了该日志数据的记录格式,其中每行记录有5部分组成:访问者IP、访问时间、访问资源、访问状态(HTTP状态码)、本次访问流量。

log

图1 日志记录数据格式

  本次使用数据来自于两个2013年的日志文件,分别为access_2013_05_30.log与access_2013_05_31.log,下载地址为:http://pan.baidu.com/s/1pJE7XR9

1.2 要清理的数据

  (1)根据前一篇的关键指标的分析,我们所要统计分析的均不涉及到访问状态(HTTP状态码)以及本次访问的流量,于是我们首先可以将这两项记录清理掉;

  (2)根据日志记录的数据格式,我们需要将日期格式转换为平常所见的普通格式如20150426这种,于是我们可以写一个类将日志记录的日期进行转换;

  (3)由于静态资源的访问请求对我们的数据分析没有意义,于是我们可以将"GET /staticsource/"开头的访问记录过滤掉,又因为GET和POST字符串对我们也没有意义,因此也可以将其省略掉;

二、数据清洗过程

2.1 定期上传日志至HDFS

  首先,把日志数据上传到HDFS中进行处理,可以分为以下几种情况:

  (1)如果是日志服务器数据较小、压力较小,可以直接使用shell命令把数据上传到HDFS中;

  (2)如果是日志服务器数据较大、压力较大,使用NFS在另一台服务器上上传数据;

  (3)如果日志服务器非常多、数据量大,使用flume进行数据处理;

  这里我们的实验数据文件较小,因此直接采用第一种Shell命令方式。又因为日志文件时每天产生的,因此需要设置一个定时任务,在第二天的1点钟自动将前一天产生的log文件上传到HDFS的指定目录中。所以,我们通过shell脚本结合crontab创建一个定时任务techbbs_core.sh,内容如下:

#!/bin/sh

#step1.get yesterday format string
yesterday=$(date --date='1 days ago' +%Y_%m_%d)
#step2.upload logs to hdfs
hadoop fs -put /usr/local/files/apache_logs/access_${yesterday}.log /project/techbbs/data

  结合crontab设置为每天1点钟自动执行的定期任务:crontab -e,内容如下(其中1代表每天1:00,techbbs_core.sh为要执行的脚本文件):

* 1 * * * techbbs_core.sh

  验证方式:通过命令 crontab -l 可以查看已经设置的定时任务

2.2 编写MapReduce程序清理日志

  (1)编写日志解析类对每行记录的五个组成部分进行单独的解析

复制代码
    static class LogParser {
        public static final SimpleDateFormat FORMAT = new SimpleDateFormat(
                "d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH);
        public static final SimpleDateFormat dateformat1 = new SimpleDateFormat(
                "yyyyMMddHHmmss");/**
         * 解析英文时间字符串
         * 
         * @param string
         * @return
         * @throws ParseException
         */
        private Date parseDateFormat(String string) {
            Date parse = null;
            try {
                parse = FORMAT.parse(string);
            } catch (ParseException e) {
                e.printStackTrace();
            }
            return parse;
        }

        /**
         * 解析日志的行记录
         * 
         * @param line
         * @return 数组含有5个元素,分别是ip、时间、url、状态、流量
         */
        public String[] parse(String line) {
            String ip = parseIP(line);
            String time = parseTime(line);
            String url = parseURL(line);
            String status = parseStatus(line);
            String traffic = parseTraffic(line);

            return new String[] { ip, time, url, status, traffic };
        }

        private String parseTraffic(String line) {
            final String trim = line.substring(line.lastIndexOf("\"") + 1)
                    .trim();
            String traffic = trim.split(" ")[1];
            return traffic;
        }

        private String parseStatus(String line) {
            final String trim = line.substring(line.lastIndexOf("\"") + 1)
                    .trim();
            String status = trim.split(" ")[0];
            return status;
        }

        private String parseURL(String line) {
            final int first = line.indexOf("\"");
            final int last = line.lastIndexOf("\"");
            String url = line.substring(first + 1, last);
            return url;
        }

        private String parseTime(String line) {
            final int first = line.indexOf("[");
            final int last = line.indexOf("+0800]");
            String time = line.substring(first + 1, last).trim();
            Date date = parseDateFormat(time);
            return dateformat1.format(date);
        }

        private String parseIP(String line) {
            String ip = line.split("- -")[0].trim();
            return ip;
        }
    }
复制代码

  (2)编写MapReduce程序对指定日志文件的所有记录进行过滤

  Mapper类:

复制代码
        static class MyMapper extends
            Mapper<LongWritable, Text, LongWritable, Text> {
        LogParser logParser = new LogParser();
        Text outputValue = new Text();

        protected void map(
                LongWritable key,
                Text value,
                org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, LongWritable, Text>.Context context)
                throws java.io.IOException, InterruptedException {
            final String[] parsed = logParser.parse(value.toString());

            // step1.过滤掉静态资源访问请求
            if (parsed[2].startsWith("GET /static/")
                    || parsed[2].startsWith("GET /uc_server")) {
                return;
            }
            // step2.过滤掉开头的指定字符串
            if (parsed[2].startsWith("GET /")) {
                parsed[2] = parsed[2].substring("GET /".length());
            } else if (parsed[2].startsWith("POST /")) {
                parsed[2] = parsed[2].substring("POST /".length());
            }
            // step3.过滤掉结尾的特定字符串
            if (parsed[2].endsWith(" HTTP/1.1")) {
                parsed[2] = parsed[2].substring(0, parsed[2].length()
                        - " HTTP/1.1".length());
            }
            // step4.只写入前三个记录类型项
            outputValue.set(parsed[0] + "\t" + parsed[1] + "\t" + parsed[2]);
            context.write(key, outputValue);
        }
    }
复制代码

  Reducer类:

复制代码
    static class MyReducer extends
            Reducer<LongWritable, Text, Text, NullWritable> {
        protected void reduce(
                LongWritable k2,
                java.lang.Iterable<Text> v2s,
                org.apache.hadoop.mapreduce.Reducer<LongWritable, Text, Text, NullWritable>.Context context)
                throws java.io.IOException, InterruptedException {
            for (Text v2 : v2s) {
                context.write(v2, NullWritable.get());
            }
        };
    }
复制代码

  (3)LogCleanJob.java的完整示例代码

复制代码
package techbbs;

import java.net.URI;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class LogCleanJob extends Configured implements Tool {

    public static void main(String[] args) {
        Configuration conf = new Configuration();
        try {
            int res = ToolRunner.run(conf, new LogCleanJob(), args);
            System.exit(res);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    @Override
    public int run(String[] args) throws Exception {
        final Job job = new Job(new Configuration(),
                LogCleanJob.class.getSimpleName());
        // 设置为可以打包运行
        job.setJarByClass(LogCleanJob.class);
        FileInputFormat.setInputPaths(job, args[0]);
        job.setMapperClass(MyMapper.class);
        job.setMapOutputKeyClass(LongWritable.class);
        job.setMapOutputValueClass(Text.class);
        job.setReducerClass(MyReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        // 清理已存在的输出文件
        FileSystem fs = FileSystem.get(new URI(args[0]), getConf());
        Path outPath = new Path(args[1]);
        if (fs.exists(outPath)) {
            fs.delete(outPath, true);
        }
        
        boolean success = job.waitForCompletion(true);
        if(success){
            System.out.println("Clean process success!");
        }
        else{
            System.out.println("Clean process failed!");
        }
        return 0;
    }

    static class MyMapper extends
            Mapper<LongWritable, Text, LongWritable, Text> {
        LogParser logParser = new LogParser();
        Text outputValue = new Text();

        protected void map(
                LongWritable key,
                Text value,
                org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, LongWritable, Text>.Context context)
                throws java.io.IOException, InterruptedException {
            final String[] parsed = logParser.parse(value.toString());

            // step1.过滤掉静态资源访问请求
            if (parsed[2].startsWith("GET /static/")
                    || parsed[2].startsWith("GET /uc_server")) {
                return;
            }
            // step2.过滤掉开头的指定字符串
            if (parsed[2].startsWith("GET /")) {
                parsed[2] = parsed[2].substring("GET /".length());
            } else if (parsed[2].startsWith("POST /")) {
                parsed[2] = parsed[2].substring("POST /".length());
            }
            // step3.过滤掉结尾的特定字符串
            if (parsed[2].endsWith(" HTTP/1.1")) {
                parsed[2] = parsed[2].substring(0, parsed[2].length()
                        - " HTTP/1.1".length());
            }
            // step4.只写入前三个记录类型项
            outputValue.set(parsed[0] + "\t" + parsed[1] + "\t" + parsed[2]);
            context.write(key, outputValue);
        }
    }

    static class MyReducer extends
            Reducer<LongWritable, Text, Text, NullWritable> {
        protected void reduce(
                LongWritable k2,
                java.lang.Iterable<Text> v2s,
                org.apache.hadoop.mapreduce.Reducer<LongWritable, Text, Text, NullWritable>.Context context)
                throws java.io.IOException, InterruptedException {
            for (Text v2 : v2s) {
                context.write(v2, NullWritable.get());
            }
        };
    }

    /*
     * 日志解析类
     */
    static class LogParser {
        public static final SimpleDateFormat FORMAT = new SimpleDateFormat(
                "d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH);
        public static final SimpleDateFormat dateformat1 = new SimpleDateFormat(
                "yyyyMMddHHmmss");

        public static void main(String[] args) throws ParseException {
            final String S1 = "27.19.74.143 - - [30/May/2013:17:38:20 +0800] \"GET /static/image/common/faq.gif HTTP/1.1\" 200 1127";
            LogParser parser = new LogParser();
            final String[] array = parser.parse(S1);
            System.out.println("样例数据: " + S1);
            System.out.format(
                    "解析结果:  ip=%s, time=%s, url=%s, status=%s, traffic=%s",
                    array[0], array[1], array[2], array[3], array[4]);
        }

        /**
         * 解析英文时间字符串
         * 
         * @param string
         * @return
         * @throws ParseException
         */
        private Date parseDateFormat(String string) {
            Date parse = null;
            try {
                parse = FORMAT.parse(string);
            } catch (ParseException e) {
                e.printStackTrace();
            }
            return parse;
        }

        /**
         * 解析日志的行记录
         * 
         * @param line
         * @return 数组含有5个元素,分别是ip、时间、url、状态、流量
         */
        public String[] parse(String line) {
            String ip = parseIP(line);
            String time = parseTime(line);
            String url = parseURL(line);
            String status = parseStatus(line);
            String traffic = parseTraffic(line);

            return new String[] { ip, time, url, status, traffic };
        }

        private String parseTraffic(String line) {
            final String trim = line.substring(line.lastIndexOf("\"") + 1)
                    .trim();
            String traffic = trim.split(" ")[1];
            return traffic;
        }

        private String parseStatus(String line) {
            final String trim = line.substring(line.lastIndexOf("\"") + 1)
                    .trim();
            String status = trim.split(" ")[0];
            return status;
        }

        private String parseURL(String line) {
            final int first = line.indexOf("\"");
            final int last = line.lastIndexOf("\"");
            String url = line.substring(first + 1, last);
            return url;
        }

        private String parseTime(String line) {
            final int first = line.indexOf("[");
            final int last = line.indexOf("+0800]");
            String time = line.substring(first + 1, last).trim();
            Date date = parseDateFormat(time);
            return dateformat1.format(date);
        }

        private String parseIP(String line) {
            String ip = line.split("- -")[0].trim();
            return ip;
        }
    }
}
复制代码

  (4)导出jar包,并将其上传至Linux服务器指定目录中

2.3 定期清理日志至HDFS

  这里我们改写刚刚的定时任务脚本,将自动执行清理的MapReduce程序加入脚本中,内容如下:

#!/bin/sh

#step1.get yesterday format string
yesterday=$(date --date='1 days ago' +%Y_%m_%d)
#step2.upload logs to hdfs
hadoop fs -put /usr/local/files/apache_logs/access_${yesterday}.log /project/techbbs/data
#step3.clean log data
hadoop jar /usr/local/files/apache_logs/mycleaner.jar /project/techbbs/data/access_${yesterday}.log /project/techbbs/cleaned/${yesterday}

  这段脚本的意思就在于每天1点将日志文件上传到HDFS后,执行数据清理程序对已存入HDFS的日志文件进行过滤,并将过滤后的数据存入cleaned目录下。 

2.4 定时任务测试

  (1)因为两个日志文件是2013年的,因此这里将其名称改为2015年当天以及前一天的,以便这里能够测试通过。

  (2)执行命令:techbbs_core.sh 2014_04_26

  控制台的输出信息如下所示,可以看到过滤后的记录减少了很多:

15/04/26 04:27:20 INFO input.FileInputFormat: Total input paths to process : 1
15/04/26 04:27:20 INFO util.NativeCodeLoader: Loaded the native-hadoop library
15/04/26 04:27:20 WARN snappy.LoadSnappy: Snappy native library not loaded
15/04/26 04:27:22 INFO mapred.JobClient: Running job: job_201504260249_0002
15/04/26 04:27:23 INFO mapred.JobClient: map 0% reduce 0%
15/04/26 04:28:01 INFO mapred.JobClient: map 29% reduce 0%
15/04/26 04:28:07 INFO mapred.JobClient: map 42% reduce 0%
15/04/26 04:28:10 INFO mapred.JobClient: map 57% reduce 0%
15/04/26 04:28:13 INFO mapred.JobClient: map 74% reduce 0%
15/04/26 04:28:16 INFO mapred.JobClient: map 89% reduce 0%
15/04/26 04:28:19 INFO mapred.JobClient: map 100% reduce 0%
15/04/26 04:28:49 INFO mapred.JobClient: map 100% reduce 100%
15/04/26 04:28:50 INFO mapred.JobClient: Job complete: job_201504260249_0002
15/04/26 04:28:50 INFO mapred.JobClient: Counters: 29
15/04/26 04:28:50 INFO mapred.JobClient: Job Counters 
15/04/26 04:28:50 INFO mapred.JobClient: Launched reduce tasks=1
15/04/26 04:28:50 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=58296
15/04/26 04:28:50 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
15/04/26 04:28:50 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
15/04/26 04:28:50 INFO mapred.JobClient: Launched map tasks=1
15/04/26 04:28:50 INFO mapred.JobClient: Data-local map tasks=1
15/04/26 04:28:50 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=25238
15/04/26 04:28:50 INFO mapred.JobClient: File Output Format Counters 
15/04/26 04:28:50 INFO mapred.JobClient: Bytes Written=12794925
15/04/26 04:28:50 INFO mapred.JobClient: FileSystemCounters
15/04/26 04:28:50 INFO mapred.JobClient: FILE_BYTES_READ=14503530
15/04/26 04:28:50 INFO mapred.JobClient: HDFS_BYTES_READ=61084325
15/04/26 04:28:50 INFO mapred.JobClient: FILE_BYTES_WRITTEN=29111500
15/04/26 04:28:50 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=12794925
15/04/26 04:28:50 INFO mapred.JobClient: File Input Format Counters 
15/04/26 04:28:50 INFO mapred.JobClient: Bytes Read=61084192
15/04/26 04:28:50 INFO mapred.JobClient: Map-Reduce Framework
15/04/26 04:28:50 INFO mapred.JobClient: Map output materialized bytes=14503530
15/04/26 04:28:50 INFO mapred.JobClient: Map input records=548160
15/04/26 04:28:50 INFO mapred.JobClient: Reduce shuffle bytes=14503530
15/04/26 04:28:50 INFO mapred.JobClient: Spilled Records=339714
15/04/26 04:28:50 INFO mapred.JobClient: Map output bytes=14158741
15/04/26 04:28:50 INFO mapred.JobClient: CPU time spent (ms)=21200
15/04/26 04:28:50 INFO mapred.JobClient: Total committed heap usage (bytes)=229003264
15/04/26 04:28:50 INFO mapred.JobClient: Combine input records=0
15/04/26 04:28:50 INFO mapred.JobClient: SPLIT_RAW_BYTES=133
15/04/26 04:28:50 INFO mapred.JobClient: Reduce input records=169857
15/04/26 04:28:50 INFO mapred.JobClient: Reduce input groups=169857
15/04/26 04:28:50 INFO mapred.JobClient: Combine output records=0
15/04/26 04:28:50 INFO mapred.JobClient: Physical memory (bytes) snapshot=154001408
15/04/26 04:28:50 INFO mapred.JobClient: Reduce output records=169857
15/04/26 04:28:50 INFO mapred.JobClient: Virtual memory (bytes) snapshot=689442816
15/04/26 04:28:50 INFO mapred.JobClient: Map output records=169857
Clean process success!

  (3)通过Web接口查看HDFS中的日志数据:

  存入的未过滤的日志数据:/project/techbbs/data/

  存入的已过滤的日志数据:/project/techbbs/cleaned/

 

相关文章推荐

Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗

Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗 一、数据情况分析 1.1 数据情况回顾   该论坛数据有两部分:   (1)历史数据约56GB,统计到201...

Hadoop学习笔记—20.网站日志分析项目案例

一、项目背景与数据情况 1.1 项目来源   本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖,如图1所示。 ...

Hadoop学习笔记—20.网站日志分析项目案例(三)统计分析

一、借助Hive进行统计 1.1 准备工作:建立分区表   为了能够借助Hive进行统计分析,首先我们需要将清洗后的数据存入Hive中,那么我们需要先建立一张表。这里我们选择分区表,以日期作为...

Hadoop学习笔记—20.网站日志分析项目案例(一)项目介绍

一、项目背景与数据情况 1.1 项目来源   本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖,如图1所示。 图1 项目来...

Hadoop之网站日志分析项目案例(一)介绍(笔记21)

网站日志分析项目案例(一)项目介绍:当前页面 网站日志分析项目案例(二)数据清洗:http://www.cnblogs.com/edisonchou/p/4458219.html 网站日志分析项目案例...

Hadoop学习笔记—5.自定义类型处理手机上网日志

一、测试数据:手机上网日志 1.1 关于这个日志   假设我们如下一个日志文件,这个文件的内容是来自某个电信运营商的手机上网日志,文件的内容已经经过了优化,格式比较规整,便于学习研究。   该文...

asp.net4.0网站开发与项目实战—学习笔记1

asp.net4.0网站开发与项目实战,以前一直作为工具书使用,只翻看需要的章节内容,在开发了两个Web应用程序之后,再回来完整的阅读此书,查看以前忽略的内容,特别相关的概念。 本次学习内容.net框...

hadoop学习笔记之mapreduce 基于hbase日志数据的最频繁访问ip统计

前言本篇打算基于hbase中存储的日志信息,统计最常访问IP,得到结果jar依赖 org.apache.hadoop hadoop-common ...

编译原理学习笔记05——(识别孙悟空72变之魔鬼特训—递归下降分析程序构造)——2014_1_20

感觉学习资料还不全,模仿了一个类似简单程序,还有点不完整,等到后面再完善吧。 不含左递归和每个非终结符的所有候选式的终结首符集都两两不相交条件 暂时先放在一边,也是后面再回头理解。...

大数据基础(十)Maven构建Hadoop日志清洗项目(二)

Maven Hadoop日志清洗项目(二) Hadoop 2.7.2  Hive 2.1.0  Sqoop 1.4.6 参考: http://www.cnblogs....
  • dst1213
  • dst1213
  • 2016年08月13日 22:19
  • 546
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗
举报原因:
原因补充:

(最多只允许输入30个字)