重建二叉树
  时间限制:
  1000 ms  |  内存限制:
  65535 KB
 
 
 
  难度:
  3
 
 
-  
 
   描述
 
 
 - 
  题目很简单,给你一棵二叉树的后序和中序序列,求出它的前序序列(So easy!)。 
   
  
- 
   
     输入
   
   
 - 
    输入有多组数据(少于100组),以文件结尾结束。
    
每组数据仅一行,包括两个字符串,中间用空格隔开,分别表示二叉树的后序和中序序列(字符串长度小于26,输入数据保证合法)。 
   
     输出
   
    - 每组输出数据单独占一行,输出对应得先序序列。 样例输入
 -  
    
ACBFGED ABCDEFG CDAB CBAD
   
     样例输出
   
    -  
    
DBACEGF BCAD
   
     来源
   
    - 原创 上传者
 
这道题主要考查对二叉树的遍历的熟悉程度,对先序遍历,中序遍历,后序遍历的掌握程度;
由后序遍历可以得到,最后一个字母应该就是树的根节点,中序遍历是先访问左子树,后访问根节点,在访问右子树,然后通过中序遍历的序列,可以把这颗树分成左右子树,得出这颗树的结构,然后再递归得出先序遍历的序列;
下面是代码:
#include <cstdio> #include <cstring> #include <cstdlib> struct node { char value; node *lchild,*rchild;//左孩子,右孩子 }; node *newnode(char c) { node *p=(node *)malloc(sizeof(node)); p->value=c; p->lchild=p->rchild=NULL; return p; } node *rebulid(char *post,char *in,int n) { if(n==0) return NULL; char ch=post[n-1];//得到的是根节点的值 node *p=newnode(ch); int i; for(i=0;i<n&&in[i]!=ch;i++); int l_len=i; int r_len=n-i-1; if(l_len>0) p->lchild=rebulid(post,in,l_len);//由中序遍历得出左右子树的值 if(r_len>0) p->rchild=rebulid(post + l_len, in+l_len+1, r_len); return p; } void preorder(node *p)//先序遍历 { if(p==NULL) return; printf("%c",p->value); preorder(p->lchild); preorder(p->rchild); } int main() { char postorder[30],inorder[30]; while(scanf("%s%s",postorder,inorder)!=EOF) { node *root=rebulid(postorder,inorder,strlen(postorder)); preorder(root); printf("\n"); } return 0; }
 - 
    输入有多组数据(少于100组),以文件结尾结束。
    
 
                  
                  
                  
                  
                            
                            
                            
本文介绍了一种根据二叉树的后序和中序序列重构其先序序列的方法。通过对根节点的确定及左右子树划分,递归地重建整棵树,并提供了完整的C语言实现代码。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					963
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            