卷积和快速傅里叶变换(FFT)的实现

本文介绍了图像处理中的卷积运算,包括其在滤波中的应用,并探讨了如何通过快速傅里叶变换(FFT)提升卷积运算的效率。文章详细阐述了离散傅里叶变换的原理,并展示了如何在Python中使用numpy进行向量化的FFT操作。此外,还提到了c++实现的递归与非递归版FFT。参考链接提供了更多关于FFT和图像卷积的深入学习资源。
摘要由CSDN通过智能技术生成

卷积运算

卷积可以说是图像处理中最基本的操作。线性滤波通过不同的卷积核,可以产生很多不同的效果。假如有一个要处理的二维图像,通过二维的滤波矩阵(卷积核),对于图像的每一个像素点,计算它的领域像素和滤波器矩阵的对应元素的乘积,然后累加,作为该像素位置的值。关于图像卷积和滤波的一些知识点可以参考这篇博客。

下面是通过python模拟实现的图像卷积操作,模拟了sobel算子,prewitt算子和拉普拉斯算子。python的np包中有convolve函数可以直接调用,scipy中也有scipy.signal.convolve函数可以直接调用。

import matplotlib.pyplot as plt
import pylab
import cv2
import numpy as np
from PIL import Image
import os

def conv(image, kernel):
    height, width = image.shape        # 获取图像的维度
    h, w = kernel.shape                 # 卷积核的维度

    # 经过卷积操作后得到的新的图像的尺寸
    new_h = height - h + 1
    new_w = width - w + 1
    # 对新的图像矩阵进行初始化
    new_image = np.zeros((new_h, new_w), dtype=np.float)     

    # 进行卷积操作,矩阵对应元素值相乘
    for i in range(new_w):
        for j in range(new_h):
            new_image[i, j] = np.sum(image[i:i+h, j:j+w] * kernel)    # 矩阵元素相乘累加

    # 去掉矩阵乘法后的小于0的和大于255的原值,重置为0和255
    # 用clip函数处理矩阵的元素,使元素值处于(0,255)之间
    new_image = new_image.clip(0, 255)   
    
    # 将新图像各元素的值四舍五入,然后转成8位无符号整型
    new_image = np.rint(new_image).astype('uint8')     
    return new_image
    
if __name__ == "__main__":

    # 读取图像信息,并转换为numpy下的数组
    image = Image.open("图片.jpg", 'r')
    output_path = "./outputPic/"
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    a = np.array(image)

    # sobel 算子
    sobel_x = np.array(([-1, 0, 1],
                        [-2, 0, 2],
                        [-1, 0, 1]))
    sobel_y = np.array
快速傅里叶卷积(FFC)是一种神经算子,它允许在神经网络中执行非局部推理和生成。FFC的结构包括本地分支和全局分支。局部分支使用传统的卷积进行特征图的局部更新,而全局分支对特征图进行傅里叶变换并在影响全局上下文的频谱域内进行更新。具体来说,FFC会先对特征图的频率维度进行傅里叶变换,然后再进行卷积操作和傅里叶反变换。这使得FFC在涉及到傅里叶变换的维度上对输入张量有全局影响。 此外,研究发现将FFC层合并到U-Net架构中是有益的。在U-Net结构的每一层,可以使用几个剩余的FFC块与卷积上采样或下采样。通常,使用FFC的U-Net级别时,参数α(进入快速傅里叶卷积全局分支的通道的比率)的选择对于性能的提升是有益的。 另外,FFC也可以应用于语音增强问题。研究表明,基于快速傅里叶卷积的神经网络架构在语音增强质量、相位估计和参数效率方面明显优于基于普通卷积的架构。因此,所提出的FFC架构在语音降噪基准测试中表现出最先进的结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [FFC-SE: Fast Fourier Convolution for Speech Enhancement](https://blog.csdn.net/weixin_48994423/article/details/124190533)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值