约瑟夫环学习小记

本文部分内容摘自:

约瑟夫环_百度百科
http://baike.baidu.com/view/717633.htm

poj 1012 - 书山有路,学海无涯 - 博客园
http://www.cnblogs.com/yu-chao/archive/2011/05/29/2062276.html


约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。


在不改变原意的情况下改变描述:

n个人(编号0~(n-1)),从0开始报数,报到m-1的退出,剩下的人继续从0开始报数。求胜利者的编号。

O(n)算法:

我们知道第一个人(编号一定是(m-1)%n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始)。

假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去刚好就是n个人情况的解。

∵ k=m%n;

∴ x' = x+k = x+ m%n ; 而 x+ m%n 可能大于n
∴x'= (x+ m%n)%n = (x+m)%n
得到 x‘=(x+m)%n。


严谨推导后得出递推公式

i轮出局的人为f(i)=(f(i-1)+m-1)%(n-i+1),f(0)=0; f(i) 表示当前子序列中要退出的那个人(当前序列编号为0~(n-i));

拿个例子说:K=4,M=30;

f(0)=0;

f(1)=(f(0)+30-1)%8=5; 序列(0,1,2,3,4,5,6,7)中的5

f(2)=(f(1)+30-1)%7=6; 序列(0,1,2,3,4,6,7)中的7

f(3)=(f(2)+30-1)%6=5; 序列(0,1,2,3,4,6)中的6

f(4)=(f(3)+30-1)%5=4; 序列(0,1,2,3,4)中的4

每隔一人退出的特殊情况

在这种特殊情况下,算法的时间复杂度可以大大简化。

理论参见《具体数学》7-14页

代码参见:http://www.cnblogs.com/asen32/archive/2012/11/30/2796898.html 的E题


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值