【分数规划+消圈算法】【bzoj 3597】: [Scoi2014]方伯伯运椰子

http://www.lydsy.com/JudgeOnline/problem.php?id=3597


这破题让我想了足足8个月,学习了分数规划后突然想到有这道题,于是就迫不及待地来A了



感觉和最优比率环是一样的,只不过需要稍稍转化一下,注意对各个权值的理解

注意边权是负的,意义是【变化的费用】而不是【减少的费用】

那么就可以用消圈算法了


UPD May.9,2015

鉴于有人没懂这个消圈算法。。。我大概解释一下

就是说如果有负环那么就不是最小费用流

我利用消圈算法来判定是否为最小费用流

就用一个dfs的spfa来实现


//#define _TEST _TEST
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
/************************************************
Code By willinglive    Blog:http://willinglive.cf
************************************************/
#define rep(i,l,r) for(int i=(l),___t=(r);i<=___t;i++)
#define per(i,r,l) for(int i=(r),___t=(l);i>=___t;i--)
#define MS(arr,x) memset(arr,x,sizeof(arr))
#define LL long long
#define INE(i,u,e) for(int i=head[u];~i;i=e[i].next)
inline const int read()
{int r=0,k=1;char c=getchar();for(;c<'0'||c>'9';c=getchar())if(c=='-')k=-1;
for(;c>='0'&&c<='9';c=getchar())r=r*10+c-'0';return k*r;}
/
const double eps=1e-3;
const int N=555;
const int M=3333;
int n,m;
struct edge{int v,b,w,next;}e[M*2];
int head[N],k;
double mid;
bool stop,flag[N];
double dis[N];
/
void adde(int u,int v,int w)
{e[k].v=v;e[k].w=w;e[k].next=head[u];head[u]=k++;}
void spfa(int u)
{
	if(stop) return;
	flag[u]=1;
	INE(i,u,e)
	{
		int v=e[i].v;
		if(dis[v]>dis[u]+mid-e[i].w)
		{
			dis[v]=dis[u]+mid-e[i].w;
			if(flag[v]){stop=1;return;}
			spfa(v);
		}
	}
	flag[u]=0;
}
bool check()
{
	rep(i,1,n) dis[i]=0; MS(flag,0);
	stop=0;
	rep(i,1,n)
	{
		spfa(i);
		if(stop) break;
	}
	return stop;
}
/
void input()
{
	MS(head,-1);
	n=read()+2; m=read();
	int u,v,a,b,c,d;
	rep(i,1,m)
	{
		u=read(); v=read(); a=read(); b=read(); c=read(); d=read();
		adde(u,v,-(b+d));
		if(c>0) adde(v,u,-(a-d));
	}
}
void solve()
{
	double l=0,r=1e10;
	while(r-l>eps)
	{
		mid=(l+r)/2;
		if(check()) l=mid;
		else r=mid;
	}
	printf("%.2lf\n",(l+r)/2);
}
/
int main()
{
    #ifndef _TEST
    freopen("std.in","r",stdin); freopen("std.out","w",stdout);
    #endif
    input(),solve();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值