算法学习FFT系列(3):多项式求逆详解——NTT+分治&&bzoj4555: [Tjoi2016&Heoi2016]求和例题详解

本文详细解析了bzoj4555题目,涉及到斯特林数的计算和多项式求逆。通过递推公式和指数型生成函数,介绍了如何利用多项式求逆计算给定函数的值,并给出了复杂度分析和代码实现。
摘要由CSDN通过智能技术生成

bzoj4555: [Tjoi2016&Heoi2016]

Description

在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:
这里写图片描述
S(i, j)表示第二类斯特林数,递推公式为:
S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
你能帮帮他吗?

Input

输入只有一个正整数

Output

输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000

Sample Input

3

Sample Output

87

知识点:多项式求逆

基本概念

对于一个多项式 A(x) A ( x ) ,定义 degA d e g A 为多项式的度。
对于多项式 A(x),B(x) A ( x ) , B ( x ) 存在唯一 Q(x),R(x) Q ( x ) , R ( x ) 使得

A(x)=B(x)Q(x)+R(x)(degR<degB) A ( x ) = B ( x ) Q ( x ) + R ( x ) ( d e g R < d e g B )

我们就称 Q(x) Q ( x ) A(x) A ( x ) 除以 B(x) B ( x ) 的商, R(x) R ( x ) 为其余数,记作
A(x)R(x)(modB(x)) A ( x ) ≡ R ( x ) ( mod B ( x ) )

多项式的逆元

对于一个多项式 A(x) A ( x ) 如果存在唯一的 B(x) B ( x ) degBdegA d e g B ≤ d e g A ,有

A(x)B(x)1(modxn) A ( x ) B ( x ) ≡ 1 ( mod x n )

我们称 B(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值