bzoj4555: [Tjoi2016&Heoi2016]
Description
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:
S(i, j)表示第二类斯特林数,递推公式为:
S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
你能帮帮他吗?
Input
输入只有一个正整数
Output
输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000
Sample Input
3
Sample Output
87
知识点:多项式求逆
基本概念
对于一个多项式 A(x) A ( x ) ,定义 degA d e g A 为多项式的度。
对于多项式 A(x),B(x) A ( x ) , B ( x ) 存在唯一 Q(x),R(x) Q ( x ) , R ( x ) 使得
A(x)=B(x)Q(x)+R(x)(degR<degB) A ( x ) = B ( x ) Q ( x ) + R ( x ) ( d e g R < d e g B )
我们就称 Q(x) Q ( x ) 为 A(x) A ( x ) 除以 B(x) B ( x ) 的商, R(x) R ( x ) 为其余数,记作
A(x)≡R(x)(modB(x)) A ( x ) ≡ R ( x ) ( mod B ( x ) )
多项式的逆元
对于一个多项式 A(x) A ( x ) 如果存在唯一的 B(x) B ( x ) 且 degB≤degA d e g B ≤ d e g A ,有
A(x)B(x)≡1(modxn) A ( x ) B ( x ) ≡ 1 ( mod x n )
我们称 B(x)