关闭

波利亚polya定理的学习(解决涂色问题)

标签: 置换群
51人阅读 评论(0) 收藏 举报
分类:

推荐讲解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/26/3444574.html

【目的】:

通过群论知识解决涂色问题,比如方格啊,正方体啊,给m种颜色,问有多少种涂法。

需要有一定的群论基础。

polya定理利用置换群计算涂色方案。

上面推荐的讲解里说了个很好的例子,四个格子的涂色方案。

在这里我记录一下今天我推导的正方体涂色(与正解的分析相差甚远,初学轻喷)

【题意】;
给一个正方体,对其6个面,有m种颜色可以给每个面上色。

问有多少种不同的方案数(注意:正方体可以变换方向)

【解析】:

容易想到的是正方体在空间中的放置方法有6*4=24种(即以每个面朝前,再旋转4个侧面)

我今天把这24种不同的置换全写出来了,虽然书上给出的题解非常简洁,可我理解起来还是有点困难。

下面写的这24中置换省略上面的那行数。


水平有限,只能算留个草稿了

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:42584次
    • 积分:1805
    • 等级:
    • 排名:千里之外
    • 原创:125篇
    • 转载:9篇
    • 译文:0篇
    • 评论:28条
    博客专栏
    最新评论