波利亚polya定理的学习(解决涂色问题)

推荐讲解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/26/3444574.html

【目的】:

通过群论知识解决涂色问题,比如方格啊,正方体啊,给m种颜色,问有多少种涂法。

需要有一定的群论基础。

polya定理利用置换群计算涂色方案。

上面推荐的讲解里说了个很好的例子,四个格子的涂色方案。

在这里我记录一下今天我推导的正方体涂色(与正解的分析相差甚远,初学轻喷)

【题意】;
给一个正方体,对其6个面,有m种颜色可以给每个面上色。

问有多少种不同的方案数(注意:正方体可以变换方向)

【解析】:

容易想到的是正方体在空间中的放置方法有6*4=24种(即以每个面朝前,再旋转4个侧面)

我今天把这24种不同的置换全写出来了,虽然书上给出的题解非常简洁,可我理解起来还是有点困难。

下面写的这24中置换省略上面的那行数。


水平有限,只能算留个草稿了

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/winter2121/article/details/77969643
文章标签: 置换群
个人分类: ACM**组合数学**
所属专栏: ACM荣耀之路
上一篇差分约束系统的学习 poj1364(bellman和spfa)
下一篇删数问题(n位数,删掉k位,使其最大)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭