题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3577
好吧,我觉得这道题有必要说一下题目意思;毕竟我刚开始是没有看太懂,原谅我这个英语渣渣。。。ORZ.....
题意:输入一个t,表示有t组测试数据;
接下来一行,输入两个数,k,m,其中k表示这个辆车最多可以坐这么多人,m表示有m次询问能否上车;
每一次询问,输入两个数a,b,表示该乘客能否在a站台上车,b站台下车,乘车区间为(a,b--),先后次序;
即我每次询问,你就判断在a站台处将会有多少人还在车上,小于k则表示能够上车,更新数据,反之不能上车;
这到题要注意的是,虽然是考线段树的区间更新,但是得用到lazy思想,否则很显然的会TLE;
其实也很容易理解,每当我找到完全重合的区间,我就不往下找了,先保存子节点要更新的数据,当我下次要用的时候,用一层,更新一层,
这就好比如说,我现在找第一层,发现没有找到完全重合的区间,那么我就利用之前保存的数据更新一下我下一层的数据,然后我再找下一层,以此类推;
当然,链接:http://www.douban.com/note/273509745/这里有简单的介绍Lazy思想,不懂的可以去看看;
好了,直接看代码吧;
#include<iostream>
#include<string>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1000005;
int ans[N];
struct node
{
int l,r,v,lazy;
}node[N<<2]; // 线段树的空间大概是数组空间的4倍;
void build(int l,int r,int numb) // 线段树的建立;
{
node[numb].l=l;
node[numb].r=r;
node[numb].v=0;
node[numb].lazy=0; // 用了lazy思想,提高了效率;
if(l==r) return;
int mid=(l+r)>>1;
build(l,mid,numb<<1);
build(mid+1,r,numb<<1|1);
}
void PushUp(int numb) // 往上往父节点方向更新数据;但是这里不是左右儿子的和,而是最大值,因为是站台人数;
{
node[numb].v=max(node[numb<<1].v,node[numb<<1|1].v);
}
void PushDown(int numb) // 向下往左右儿子方向更新数据;
{
node[numb<<1].lazy+=node[numb].lazy;
node[numb<<1|1].lazy+=node[numb].lazy;
node[numb<<1].v+=node[numb].lazy;
node[numb<<1|1].v+=node[numb].lazy;
node[numb].lazy=0; // 更新完了要清零;
}
void Insert(int l,int r,int numb) // 插入更新数据;
{
if(node[numb].l==l&&node[numb].r==r) // 如果区间完全重合,则不需要再往下更新了,先保存起来,可以节约很多的时间(lazy思想)
{
node[numb].v+=1;
node[numb].lazy+=1;
return;
}
if(node[numb].lazy) PushDown(numb); // 因为没有找到完全重合的区间,所以要先更新下一层区间;
int mid=(node[numb].r+node[numb].l)>>1;
if(l>mid) Insert(l,r,numb<<1|1);
else if(r<=mid) Insert(l,r,numb<<1);
else{
Insert(l,mid,numb<<1);
Insert(mid+1,r,numb<<1|1);
}
PushUp(numb); // 最后还得往上返回,更新父节点区间;
}
int query(int l,int r,int numb) // 查询区间l到r;
{
if(node[numb].l==l&&node[numb].r==r){
return node[numb].v;
}
if(node[numb].lazy) PushDown(numb); // 道理同48行;
int mid=(node[numb].r+node[numb].l)>>1;
if(l>mid) return query(l,r,numb<<1|1);
else if(r<=mid) return query(l,r,numb<<1);
else{
return max(query(l,mid,numb<<1),query(mid+1,r,numb<<1|1)); // 道理同28行;
}
}
int main()
{
int t,Case=1,len=0,k,m,a,b;
scanf("%d",&t);
while(t--){
len=0;
memset(ans,0,sizeof(ans));
scanf("%d%d",&k,&m);
build(1,1000000,1);
for(int i=0;i<m;i++){
scanf("%d%d",&a,&b);
b--; // 这里有一个问题,就是乘客从a上车,b下车,所以乘客在车上的区间为(a,b--);
if(query(a,b,1)<k){ // 表示可以上车;
ans[len++]=i+1;
Insert(a,b,1);
}
}
printf("Case %d:\n",Case++);
for(int i=0; i<len; i++) // 格式问题害我又WA了一次;
printf("%d ",ans[i]);
printf("\n\n");
}
return 0;
}
线段树与Lazy Tag
本文解析了一道关于线段树及其懒惰传播(Lazy Tag)应用的算法题。介绍了题目的具体要求,并通过代码详细解释了如何使用线段树进行区间更新及查询,特别强调了懒惰标记的重要性。

1184

被折叠的 条评论
为什么被折叠?



