题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542
看了很短网上的博客,都写得很不错,我就是学着这篇博客写的,链接:http://www.cnblogs.com/ka200812/archive/2011/11/13/2247064.html
但是我觉得他们写的都不太详细,缺少步骤,像我这种菜鸟,就花了一上午,才搞定这一题;
对于新学,我觉得还是有详细的步骤会更好的帮助理解;所以我就手画了一张步骤图,以及线段数怎么建的(orz,不会用那些高级的制图工具,so...)
首先建树,每个节点维护一个连续的区间;
总共4条竖向线段,所以共有4步插入查询,每次cover>0 说明有交面积,分步求;详细的请看图。。。
#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<queue>
#include<map>
#include<cmath>
#include<stack>
#include<set>
#include<vector>
#include<algorithm>
#define LL long long
#define inf 1<<30
using namespace std;
const int N=205;
int n;
double y[N];
struct LINE // 存储线段信息;
{
double x; // 该线段所在的位置;
double y_up,y_down; // 竖向线段的上下端点;
int flag;
}line[N];
struct node
{
double l,r;
double x; // 记录上一个横坐标位置,用于求面积;
int cover; // 记录覆盖的线段数;即同一方向的线段数;
bool flag; // 标记只有一个区间的节点,即10-15,15-20这是一个区间,我们将一个一个连续的区间离散化成一个节点;
}node[N<<2];
bool cmp(LINE a,LINE b)
{
return a.x<b.x;
}
void build(int rt,int l,int r) // 建树;
{
node[rt].l=y[l]; // 维护区间;
node[rt].r=y[r];
node[rt].x=-1;
node[rt].flag=false;
node[rt].cover=0;
if(l+1==r){ // 区间是连续的,即10-15,15-20;
node[rt].flag=true; // 标记为节点;
return;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid,r); // 同42行,所以此处mid不需要+1;
}
double Insert_query(int rt,double x,double l,double r,int flag) // 查询+更新x处(l,r)区间面积;
{
if(l>=node[rt].r||r<=node[rt].l) return 0; // 该方向节点不包含所要查询的区间;
if(node[rt].flag){ // 找到只有一个区间的叶子节点;
if(node[rt].cover>0){
double pre=node[rt].x;
double ans=(x-pre)*(node[rt].r-node[rt].l); // 计算面积;
node[rt].x=x; // 更新定位上一下x位置,便于下次计算面积;
node[rt].cover+=flag; // 更新覆盖的线段数;
return ans;
}else{
node[rt].x=x;
node[rt].cover+=flag;
return 0;
}
}
double ans1,ans2;
ans1=Insert_query(rt<<1,x,l,r,flag); // 直接往两个方向查,算有符合区间的面积;
ans2=Insert_query(rt<<1|1,x,l,r,flag); // 52行保证查询的可行性;
return ans1+ans2;
}
int main()
{
int Case=0;
double x1,x2,y1,y2;
while(~scanf("%d",&n)&&n){
int cnt=-1;
for(int i=0;i<n;i++){
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
y[++cnt]=y1;
line[cnt].x=x1;
line[cnt].y_down=y1;
line[cnt].y_up=y2;
line[cnt].flag=1; // 表示左边线段;
y[++cnt]=y2;
line[cnt].x=x2;
line[cnt].y_down=y1;
line[cnt].y_up=y2;
line[cnt].flag=-1; // 表示右边线段;
}
sort(y,y+cnt+1); // 将所有高度由小到大排序,将区间建树表示;
sort(line,line+cnt+1,cmp); // 排序,返回坐标x靠左的点;
build(1,0,cnt);
double area=0;
for(int i=0;i<=cnt;i++){
area+=Insert_query(1,line[i].x,line[i].y_down,line[i].y_up,line[i].flag);
}
printf("Test case #%d\nTotal explored area: %.2lf\n\n",++Case,area);
}
return 0;
}