昨晚打的cf,都把F切了,结果不计rating…
题目大意
给定k个n*m的由小写字母组成的矩阵(给定方式:先给定一个n *m的最初矩阵,然后k个矩阵对应5个参数a,b,c,d,e,其中(a,b)是左上角,(c,d)是右下角,然后把原矩阵的这个子矩阵的字符全部改成e)。两个矩阵的距离定义为对应每个位置字符相减之差的和。问:k个矩阵中到所有其它矩阵最小的距离和。
n,m≤1000 k≤300000
思路
n*m不大,所以可以尝试对每一位都预处理出填每个字符的答案。
首先把k个矩阵在行a,c处打插入、删除标记。由于覆盖的部分是个矩形,列对应的是一个区间。
我比赛时的naive做法
开26个线段树对应每个小写字母,然后插入、删除就是区间加减。计算每个点的答案时,先在26个线段树里单点查询,取出每种字母对应的答案(注意有些矩阵中不覆盖掉当前点,就要把原矩阵的字母算上)。然后枚举填的字母,直接计算即可。
接下来是统计答案:对填每种字母、原矩阵已经求出来每一位的答案,做一个二维前缀和,然后枚举k个矩阵,在原矩阵的答案上减去覆盖掉矩形的答案,再把填上对应字母的答案加上,就得到了该矩阵的答案了。
时间复杂度O(26nmlogm),可以通过所有数据。
更快的做法
log其实可以去掉。
对于每个矩形的参数a,b,c,d,对应的字符中,在(a,b)、(c+1,d+1)处打+1标记,(c+1,b)、(a,d+1)处打-1标记。然后求前缀和。可以发现,对于任意一个矩形的前缀和,如果在矩形内部,它正好+1,否则为0。
接下来就是枚举每个位置的字母,然后二维前缀和。
时间复杂度O(26nm)
这是带log的代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
const int N=1005,M=300005,T=4105;
typedef long long LL;
int n,m,k,t[26][T],A[M],B[M],C[M],D[M],cnt[N];
LL ans,p[N][N],s[26][N][N];
char c,typ[M],map[N][N];
vector <int> In[N],Out[N];
int read()
{
for (c=getchar();c<'0' || c>'9';c=getchar());
int x=c-48;
for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x;
}
void insert(int l,int r,int a,int b,int *t,int v,int x)
{
if (l==a && r==b)
{
t[x]+=v; return;
}
int mid=l+r>>1;
if (b<=mid) insert(l,mid,a,b,t,v,x<<1);
else if (a>mid) insert(mid+1,r,a,b,t,v,x<<1|1);
else
{
insert(l,mid,a,mid,t,v,x<<1); insert(mid+1,r,mid+1,b,t,v,x<<1|1);
}
}
int query(int l,int r,int *t,int v,int x)
{
if (l==r) return t[x];
int mid=l+r>>1;
if (v<=mid) return query(l,mid,t,v,x<<1)+t[x];else return
query(mid+1,r,t,v,x<<1|1)+t[x];
}
int main()
{
n=read(); m=read(); k=read();
for (int i=1;i<=n;i++) scanf("%s",map[i]+1);
for (int i=1;i<=k;i++)
{
A[i]=read(); B[i]=read(); C[i]=read(); D[i]=read();
In[A[i]].push_back(i); Out[C[i]].push_back(i);
for (c=getchar();c<'a' || c>'z';c=getchar()); typ[i]=c-'a';
}
for (int i=1;i<=n;i++)
{
vector <int> ::iterator it;
for (it=In[i].begin();it!=In[i].end();it++)
{
insert(1,m,B[*it],D[*it],t[typ[*it]],1,1);
}
for (int j=1;j<=m;j++)
{
int sum=0,ss=0;
for (int x=0;x<26;x++)
{
cnt[x]=query(1,m,t[x],j,1);
ss+=cnt[x];
sum+=cnt[x]*x;
}
cnt[map[i][j]-'a']+=k-ss;
sum+=(k-ss)*(map[i][j]-'a');
for (int x=0;x<26;x++)
{
if (x==map[i][j]-'a')
p[i][j]=p[i-1][j]+p[i][j-1]-p[i-1][j-1]+sum;
s[x][i][j]=s[x][i-1][j]+s[x][i][j-1]-s[x][i-1][j-1]+sum;
if (x>0) cnt[x]+=cnt[x-1];
sum+=cnt[x]-(k-cnt[x]);
}
}
for (it=Out[i].begin();it!=Out[i].end();it++)
{
insert(1,m,B[*it],D[*it],t[typ[*it]],-1,1);
}
}
ans=1e16;
for (int i=1;i<=k;i++)
{
ans=min(ans,p[n][m]-(p[C[i]][D[i]]-p[A[i]-1][D[i]]-p[C[i]][B[i]-1]+p[A[i]-1][B[i]-1])
+(s[typ[i]][C[i]][D[i]]-s[typ[i]][A[i]-1][D[i]]-s[typ[i]][C[i]][B[i]-1]+s[typ[i]][A[i]-1][B[i]-1]));
}
printf("%I64d\n",ans);
return 0;
}
不带log的
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=1005,M=300005;
typedef long long LL;
int n,m,k,A[M],B[M],C[M],D[M],cnt[N],g[26][N][N];
LL ans,p[N][N],s[26][N][N];
char c,typ[M],map[N][N];
int read()
{
for (c=getchar();c<'0' || c>'9';c=getchar());
int x=c-48;
for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x;
}
int main()
{
n=read(); m=read(); k=read();
for (int i=1;i<=n;i++) scanf("%s",map[i]+1);
for (int i=1;i<=k;i++)
{
A[i]=read(); B[i]=read(); C[i]=read(); D[i]=read();
for (c=getchar();c<'a' || c>'z';c=getchar()); typ[i]=c-'a';
g[typ[i]][A[i]][B[i]]++; g[typ[i]][C[i]+1][B[i]]--;
g[typ[i]][A[i]][D[i]+1]--; g[typ[i]][C[i]+1][D[i]+1]++;
}
for (int i=1;i<=n;i++)
{
for (int j=1;j<=m;j++)
{
int sum=0,ss=0;
for (int x=0;x<26;x++)
{
cnt[x]=g[x][i][j]+=g[x][i-1][j]+g[x][i][j-1]-g[x][i-1][j-1];
ss+=cnt[x];
sum+=cnt[x]*x;
}
cnt[map[i][j]-'a']+=k-ss;
sum+=(k-ss)*(map[i][j]-'a');
for (int x=0;x<26;x++)
{
if (x==map[i][j]-'a')
p[i][j]=p[i-1][j]+p[i][j-1]-p[i-1][j-1]+sum;
s[x][i][j]=s[x][i-1][j]+s[x][i][j-1]-s[x][i-1][j-1]+sum;
if (x>0) cnt[x]+=cnt[x-1];
sum+=cnt[x]-(k-cnt[x]);
}
}
}
ans=1e16;
for (int i=1;i<=k;i++)
{
ans=min(ans,p[n][m]-(p[C[i]][D[i]]-p[A[i]-1][D[i]]-p[C[i]][B[i]-1]+p[A[i]-1][B[i]-1])
+(s[typ[i]][C[i]][D[i]]-s[typ[i]][A[i]-1][D[i]]-s[typ[i]][C[i]][B[i]-1]+s[typ[i]][A[i]-1][B[i]-1]));
}
printf("%I64d\n",ans);
return 0;
}