[codeforces761F] Dasha and Photos

博客探讨了Codeforces 761F问题,涉及处理包含小写字母的矩阵。通过对矩阵进行特定变换并计算矩阵间字符差异的和来确定最小距离。文中详细介绍了两种解决方案,包括使用线段树的朴素方法和优化后的前缀和算法,时间复杂度分别为O(26nmlogm)和O(26nm)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨晚打的cf,都把F切了,结果不计rating…

题目大意

给定k个n*m的由小写字母组成的矩阵(给定方式:先给定一个n *m的最初矩阵,然后k个矩阵对应5个参数a,b,c,d,e,其中(a,b)是左上角,(c,d)是右下角,然后把原矩阵的这个子矩阵的字符全部改成e)。两个矩阵的距离定义为对应每个位置字符相减之差的和。问:k个矩阵中到所有其它矩阵最小的距离和。

n,m≤1000 k≤300000

思路

n*m不大,所以可以尝试对每一位都预处理出填每个字符的答案。

首先把k个矩阵在行a,c处打插入、删除标记。由于覆盖的部分是个矩形,列对应的是一个区间。

我比赛时的naive做法

开26个线段树对应每个小写字母,然后插入、删除就是区间加减。计算每个点的答案时,先在26个线段树里单点查询,取出每种字母对应的答案(注意有些矩阵中不覆盖掉当前点,就要把原矩阵的字母算上)。然后枚举填的字母,直接计算即可。
接下来是统计答案:对填每种字母、原矩阵已经求出来每一位的答案,做一个二维前缀和,然后枚举k个矩阵,在原矩阵的答案上减去覆盖掉矩形的答案,再把填上对应字母的答案加上,就得到了该矩阵的答案了。

时间复杂度O(26nmlogm),可以通过所有数据。

更快的做法

log其实可以去掉。
对于每个矩形的参数a,b,c,d,对应的字符中,在(a,b)、(c+1,d+1)处打+1标记,(c+1,b)、(a,d+1)处打-1标记。然后求前缀和。可以发现,对于任意一个矩形的前缀和,如果在矩形内部,它正好+1,否则为0。
接下来就是枚举每个位置的字母,然后二维前缀和。

时间复杂度O(26nm)

这是带log的代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>

using namespace std;

const int N=1005,M=300005,T=4105;

typedef long long LL;

int n,m,k,t[26][T],A[M],B[M],C[M],D[M],cnt[N];

LL ans,p[N][N],s[26][N][N];

char c,typ[M],map[N][N];

vector <int> In[N],Out[N];

int read()
{
    for (c=getchar();c<'0' || c>'9';c=getchar());
    int x=c-48;
    for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x;
}

void insert(int l,int r,int a,int b,int *t,int v,int x)
{
    if (l==a && r==b)
    {
        t[x]+=v; return;
    }
    int mid=l+r>>1;
    if (b<=mid) insert(l,mid,a,b,t,v,x<<1);
    else if (a>mid) insert(mid+1,r,a,b,t,v,x<<1|1);
    else
    {
        insert(l,mid,a,mid,t,v,x<<1); insert(mid+1,r,mid+1,b,t,v,x<<1|1);
    }
}

int query(int l,int r,int *t,int v,int x)
{
    if (l==r) return t[x];
    int mid=l+r>>1;
    if (v<=mid) return query(l,mid,t,v,x<<1)+t[x];else return 
    query(mid+1,r,t,v,x<<1|1)+t[x];
}

int main()
{
    n=read(); m=read(); k=read();
    for (int i=1;i<=n;i++) scanf("%s",map[i]+1);
    for (int i=1;i<=k;i++)
    {
        A[i]=read(); B[i]=read(); C[i]=read(); D[i]=read();
        In[A[i]].push_back(i); Out[C[i]].push_back(i);
        for (c=getchar();c<'a' || c>'z';c=getchar()); typ[i]=c-'a';
    }
    for (int i=1;i<=n;i++)
    {
        vector <int> ::iterator it;
        for (it=In[i].begin();it!=In[i].end();it++)
        {
            insert(1,m,B[*it],D[*it],t[typ[*it]],1,1);
        }

        for (int j=1;j<=m;j++)
        {
            int sum=0,ss=0;
            for (int x=0;x<26;x++)
            {
                cnt[x]=query(1,m,t[x],j,1);
                ss+=cnt[x];
                sum+=cnt[x]*x;
            }
            cnt[map[i][j]-'a']+=k-ss;
            sum+=(k-ss)*(map[i][j]-'a');
            for (int x=0;x<26;x++)
            {
                if (x==map[i][j]-'a')
                p[i][j]=p[i-1][j]+p[i][j-1]-p[i-1][j-1]+sum;
                s[x][i][j]=s[x][i-1][j]+s[x][i][j-1]-s[x][i-1][j-1]+sum;
                if (x>0) cnt[x]+=cnt[x-1];
                sum+=cnt[x]-(k-cnt[x]);
            }
        }

        for (it=Out[i].begin();it!=Out[i].end();it++)
        {
            insert(1,m,B[*it],D[*it],t[typ[*it]],-1,1);
        }
    }
    ans=1e16;
    for (int i=1;i<=k;i++)
    {
        ans=min(ans,p[n][m]-(p[C[i]][D[i]]-p[A[i]-1][D[i]]-p[C[i]][B[i]-1]+p[A[i]-1][B[i]-1])
        +(s[typ[i]][C[i]][D[i]]-s[typ[i]][A[i]-1][D[i]]-s[typ[i]][C[i]][B[i]-1]+s[typ[i]][A[i]-1][B[i]-1]));
    }
    printf("%I64d\n",ans);
    return 0;
}
不带log的
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N=1005,M=300005;

typedef long long LL;

int n,m,k,A[M],B[M],C[M],D[M],cnt[N],g[26][N][N];

LL ans,p[N][N],s[26][N][N];

char c,typ[M],map[N][N];

int read()
{
    for (c=getchar();c<'0' || c>'9';c=getchar());
    int x=c-48;
    for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x;
}

int main()
{
    n=read(); m=read(); k=read();
    for (int i=1;i<=n;i++) scanf("%s",map[i]+1);
    for (int i=1;i<=k;i++)
    {
        A[i]=read(); B[i]=read(); C[i]=read(); D[i]=read();
        for (c=getchar();c<'a' || c>'z';c=getchar()); typ[i]=c-'a';
        g[typ[i]][A[i]][B[i]]++; g[typ[i]][C[i]+1][B[i]]--;
        g[typ[i]][A[i]][D[i]+1]--; g[typ[i]][C[i]+1][D[i]+1]++;
    }
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=m;j++)
        {
            int sum=0,ss=0;
            for (int x=0;x<26;x++)
            {
                cnt[x]=g[x][i][j]+=g[x][i-1][j]+g[x][i][j-1]-g[x][i-1][j-1];
                ss+=cnt[x];
                sum+=cnt[x]*x;
            }
            cnt[map[i][j]-'a']+=k-ss;
            sum+=(k-ss)*(map[i][j]-'a');
            for (int x=0;x<26;x++)
            {
                if (x==map[i][j]-'a')
                p[i][j]=p[i-1][j]+p[i][j-1]-p[i-1][j-1]+sum;
                s[x][i][j]=s[x][i-1][j]+s[x][i][j-1]-s[x][i-1][j-1]+sum;
                if (x>0) cnt[x]+=cnt[x-1];
                sum+=cnt[x]-(k-cnt[x]);
            }
        }
    }
    ans=1e16;
    for (int i=1;i<=k;i++)
    {
        ans=min(ans,p[n][m]-(p[C[i]][D[i]]-p[A[i]-1][D[i]]-p[C[i]][B[i]-1]+p[A[i]-1][B[i]-1])
        +(s[typ[i]][C[i]][D[i]]-s[typ[i]][A[i]-1][D[i]]-s[typ[i]][C[i]][B[i]-1]+s[typ[i]][A[i]-1][B[i]-1]));
    }
    printf("%I64d\n",ans);
    return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值