题目大意
给定一棵n个节点的树,每条边有边权。m个询问,形式为(u,v,l),问题是:u到v的路径,假设长度为m,第i条边权值为xi,构造一个长度为m的01串s,如果xi≥l,那么si=1,否则si=0。对于得到的串s,假设它有k段连续的1,第i段长度为pi,那么要你输出 ∑ki=1f[pi] ,其中f数组一开始就给出。
n,m≤100000 权值,l≤ 109 |fi|≤1000
分析
又是关于树上路径的问题。
容易发现,答案是可合并的(具体细节自己想),所以可以考虑把路径划分一下来使问题变得简单。
那就想到了树链剖分。
首先链剖,把每个询问分成约log段。就是大概nlogn个区间询问了。
然后把每条边、询问放在一起按照权值降序排序(权值相同先加边后询问)。然后按顺序进行单点+1、区间询问操作。这个可以用线段树解决。
时间复杂度
O(nlog2n)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=100005,T=262222,Log=17;
typedef long long LL;
int n,q,m,sum,tot,dfn[N],pos[N],f[N],h[N],e[N*2],nxt[N*2],w[N*2],cnt[N],size[N],fa[N][Log],dep[N],top[N];
int now,L[N][40],R[N][40],Mid[N];
struct data
{
int x,typ,l;
}A[N+N];
bool cmp(data a,data b)
{
return a.x>b.x || a.x==b.x && a.typ<b.typ;
}
struct Way
{
int left,right,s,len;
}t[T],Ans[N];
char c;
int read()
{
int x=0,sig=1;
for (c=getchar();c<'0' || c>'9';c=getchar()) if (c=='-') sig=-1;
for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x*sig;
}
void add(int x,int y,int l)
{
e[++tot]=y; nxt[tot]=h[x]; h[x]=tot; w[tot]=l;
}
void init(int x)
{
dep[x]=dep[fa[x][0]]+1;
for (int i=h[x];i;i=nxt[i]) if (e[i]!=fa[x][0])
{
fa[e[i]][0]=x;
A[sum].typ=0; A[sum].x=w[i]; A[sum++].l=e[i];
init(e[i]);
size[x]+=size[e[i]]+1;
}
}
void dfs(int x)
{
pos[dfn[x]=++tot]=x; top[tot]=m;
int j=0;
for (int i=h[x];i;i=nxt[i]) if (e[i]!=fa[x][0] && (!j || size[e[i]]>size[j])) j=e[i];
if (!j) return;
dfs(j);
for (int i=h[x];i;i=nxt[i]) if (e[i]!=j && e[i]!=fa[x][0])
{
m=tot+1; dfs(e[i]);
}
}
int getlca(int x,int y)
{
if (dep[x]<dep[y]) x^=y^=x^=y;
for (int i=Log-1;i>=0;i--) if (dep[fa[x][i]]>=dep[y]) x=fa[x][i];
for (int i=Log-1;i>=0;i--) if (fa[x][i]!=fa[y][i])
{
x=fa[x][i]; y=fa[y][i];
}
if (x!=y) x=fa[x][0];
return x;
}
void Merge(Way &a,Way b)
{
if (a.len==a.left)
{
if (b.len==b.left)
{
a.len+=b.len; a.left=a.right=a.len;
return;
}
a.left+=b.left; a.s=b.s; a.right=b.right; a.len+=b.len;
return;
}
if (b.len==b.left)
{
a.len+=b.len; a.right+=b.len;
return;
}
a.s+=f[a.right+b.left]+b.s; a.right=b.right; a.len+=b.len;
}
void get(int x,int t,int id)
{
int y=top[x];
if (y<=dfn[t]) y=dfn[t]+1;
if (y>x) return;
get(dfn[fa[pos[y]][0]],t,id);
L[id][cnt[id]]=y; R[id][cnt[id]++]=x;
}
void t_init(int l,int r,int x)
{
t[x].len=r-l+1;
if (l==r) return;
int mid=l+r>>1;
t_init(l,mid,x<<1); t_init(mid+1,r,x<<1|1);
}
void insert(int l,int r,int g,int x)
{
if (l==r)
{
t[x].left=t[x].right=1;
return;
}
int mid=l+r>>1;
if (g<=mid) insert(l,mid,g,x<<1);else insert(mid+1,r,g,x<<1|1);
t[x]=t[x<<1];
Merge(t[x],t[x<<1|1]);
}
Way query(int l,int r,int a,int b,int x)
{
if (l==a && r==b) return t[x];
int mid=l+r>>1;
if (b<=mid) return query(l,mid,a,b,x<<1);
if (a>mid) return query(mid+1,r,a,b,x<<1|1);
Way tmp=query(l,mid,a,mid,x<<1);
Merge(tmp,query(mid+1,r,mid+1,b,x<<1|1));
return tmp;
}
int main()
{
n=read(); q=read();
for (int i=1;i<n;i++) f[i]=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read(),w=read();
add(x,y,w); add(y,x,w);
}
init(1); tot=0; m=1; dfs(1);
for (int j=1;j<Log;j++)
for (int i=1;i<=n;i++) fa[i][j]=fa[fa[i][j-1]][j-1];
tot=0;
for (int i=0;i<q;i++)
{
int x=read(),y=read(),lca=getlca(x,y); now=read();
A[sum].l=i; A[sum].typ=1; A[sum++].x=now;
get(dfn[x],lca,i); Mid[i]=cnt[i]; get(dfn[y],lca,i);
}
sort(A,A+sum,cmp);
t_init(1,n,1);
for (int i=0;i<sum;i++) if (A[i].typ==0) insert(1,n,dfn[A[i].l],1);else
{
if (Mid[A[i].l]>0)
{
Ans[A[i].l]=query(1,n,L[A[i].l][0],R[A[i].l][0],1);
for (int j=1;j<Mid[A[i].l];j++)
Merge(Ans[A[i].l],query(1,n,L[A[i].l][j],R[A[i].l][j],1));
Ans[A[i].l].left^=Ans[A[i].l].right^=Ans[A[i].l].left^=Ans[A[i].l].right;
for (int j=Mid[A[i].l];j<cnt[A[i].l];j++)
Merge(Ans[A[i].l],query(1,n,L[A[i].l][j],R[A[i].l][j],1));
}else
{
Ans[A[i].l]=query(1,n,L[A[i].l][0],R[A[i].l][0],1);
for (int j=1;j<cnt[A[i].l];j++)
Merge(Ans[A[i].l],query(1,n,L[A[i].l][j],R[A[i].l][j],1));
}
}
for (int i=0;i<q;i++)
{
if (Ans[i].left==Ans[i].len) printf("%d\n",f[Ans[i].len]);
else printf("%d\n",Ans[i].s+f[Ans[i].left]+f[Ans[i].right]);
}
return 0;
}