牛客网的题,重建二叉树。(用树的先序,中序,还原二叉树)

原创 2016年05月20日 21:49:37

题目地址:http://www.nowcoder.com/ta/coding-interviews?page=

题目描述

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

#include<iostream>
#include <vector>
using namespace std;

struct TreeNode {
   int val;
   TreeNode *left;
   TreeNode *right;
   TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode* PreInCreat(vector<int> pre,vector<int> in,int l1,int h1,int l2,int h2)
{
    int i;
    TreeNode* root = new TreeNode(pre[l1]);
    for(i=l2;in[i]!=root->val;i++);
    int llen = i-l2;
    int rlen = h2-i;
    if(llen)
        root ->left = PreInCreat(pre,in,l1+1,l1+llen,l2,l2+llen-1);
    else
        root ->left = NULL;
    if(rlen)
        root ->right = PreInCreat(pre,in,h1-rlen+1,h1,h2-rlen+1,h2);
    else
        root ->right = NULL;
    return root;
}

TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> in)
{
    //cout << pre.size();
    return PreInCreat(pre,in,0,pre.size()-1,0,in.size()-1);
}

void PostOrderTravel(TreeNode* L)
{
    if(L->left)
        PostOrderTravel(L->left);
    if(L->right)
        PostOrderTravel(L->right);
    cout << L->val << " ";
}

int main()
{
    vector<int> pre{1,2,3,4,5,6};
    vector<int> in{3,2,1,5,4,6};

    //令i依次为ivec中的每一个元素,并显示
    for(auto i : pre)
        cout << i << " ";
    cout << endl;

    for(auto i : in)
        cout << i << " ";
    cout << endl;

    //reConstructBinaryTree(pre, in);
    TreeNode* root = reConstructBinaryTree(pre, in);
    PostOrderTravel(root);
}

上面为实验的代码


提交的代码如下

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    struct TreeNode* PreInCreat(vector<int> pre,vector<int> in,int l1,int h1,int l2,int h2)
    {
        int i;
        TreeNode* root = new TreeNode(pre[l1]);
        for(i=l2;in[i]!=root->val;i++);
        int llen = i-l2;
        int rlen = h2-i;
        if(llen)
            root ->left = PreInCreat(pre,in,l1+1,l1+llen,l2,l2+llen-1);
        else
            root ->left = NULL;
        if(rlen)
            root ->right = PreInCreat(pre,in,h1-rlen+1,h1,h2-rlen+1,h2);
        else
            root ->right = NULL;
        return root;
    }
     
    struct TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> in) {
        return PreInCreat(pre,in,0,pre.size()-1,0,in.size()-1);
    }
};

其他人的麻袋

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    struct TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> in) {
    int length = in.size();
    if (length == 0)
    {
        return NULL;
    }
    vector<int> left_pre, right_pre, left_in, right_in;
    TreeNode *head = new TreeNode(pre[0]); //创建根节点
    int root = 0; //根节点在中序遍历中的位置
    for (int i = 0; i < length; i++)
    {
        if (in[i] == pre[0])
        {
            root = i;
            break;
        }
    }
 
    //对于中序遍历,根节点左边的节点属于左子树,根节点右边的节点属于右子树
    for (int i = 0; i < root; i++)
    {
        left_in.push_back(in[i]);
        left_pre.push_back(pre[i + 1]);
    }
 
    for (int i = root + 1; i < length; i++)
    {
        right_in.push_back(in[i]);
        right_pre.push_back(pre[i]);
    }
 
    head->left = reConstructBinaryTree(left_pre, left_in);
    head->right = reConstructBinaryTree(right_pre, right_in);
 
    return head;
    }
};

继续改改,用左开右闭,[begin,end) 来表示集合

TreeNode* PreInCreat(vector<int> pre,vector<int> in,int l1,int h1,int l2,int h2)
{
    int root_in_in;
    TreeNode* root = new TreeNode(pre[l1]);
    for(root_in_in = l2;in[root_in_in]!=root->val;root_in_in++);

    int llen = root_in_in-l2;
    int rlen = h2 - (root_in_in+1);
    if(llen)
        root->left = PreInCreat(pre,in,l1+1,l1+llen+1,l2,root_in_in);
    else
        root->left = NULL;
    if(rlen)
        //root->right = PreInCreat(pre,in,l1+llen+1,h1,root_in_in+1,h2);
        root->right = PreInCreat(pre,in,h1-rlen,h1,root_in_in+1,h2);
    else
        root->right = NULL;

    return root;
}

TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> in)
{
    //cout << pre.size();
    return PreInCreat(pre,in,0,pre.size(),0,in.size());
}

可以运行


相关文章推荐

根据前序遍历序列和中序遍历序列重建二叉树

问题描述:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,...
  • GFJ0814
  • GFJ0814
  • 2016年10月01日 20:50
  • 351

[LeetCode] 根据前序序列和中序序列重建二叉树

LeetCode 链接: 根据前序和中序序列重建二叉树 思路: 1、根据先序向量数组的值把中序向量数组一分为二,然后递归左右部分; 2、设置全局 index 索引,作为先序遍历向量的下标,每次递...

给出先序和中序序列,还原二叉树的规律方法

给出先序和中序序列,还原二叉树的规律方法

pat--还原二叉树--根据后序中序输出先序

还原二叉树   (25分) 给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。 输入格式: 输入首先给出正整数N(≤\le≤50),为树中结点总数。下面两行先后...

Java由先序序列和中序序列还原二叉树

还原本来的二叉树并不是一个非常简单的事,虽然思想比较简单,但过程却是比较繁琐。下面我拿先序序列和中序序列来讲一下原理吧。 从先序序列中我们一下子就可以得到二叉树的根节点是第一个元素,然后再中序序列中...

根据先序、中序、后序中的两者还原二叉树——递归函数和Csharp泛型

给出一颗二叉树的先序遍历、中序遍历、后序遍历中的两者,还原这棵二叉树并输出其另一种遍历的结果。...

二叉树的还原(先序+中序)

图解分析 #include #include #include typedef struct treeNode{ int val; struct treeNode *le...

由先序与中序序列构造二叉树

  • 2013年11月19日 23:09
  • 1015B
  • 下载

根据先序和中序重建二叉树

//当前先序序列区间为[preL,preR],中序序列区间为[inL,inR],返回根节点 node* create(int preL,int preR,int inL,int inR){ if(...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:牛客网的题,重建二叉树。(用树的先序,中序,还原二叉树)
举报原因:
原因补充:

(最多只允许输入30个字)