【RMQ】Balanced Lineup

原创 2012年03月21日 18:51:28

今天终于把RMQ学了,st算法

入门题目

 

    BalancedLineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 17371   Accepted: 8044
Case TimeLimit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N≤ 50,000) always line up in the same order. One day Farmer Johndecides to organize a game of Ultimate Frisbee with some of thecows. To keep things simple, he will take a contiguous range ofcows from the milking lineup to play the game. However, for all thecows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000)potential groups of cows and their heights (1 ≤height ≤1,000,000). For each group, he wants your help to determine thedifference in height between the shortest and the tallest cow inthe group.

Input

Line 1: Two space-separatedintegers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer thatis the height of cowi
Lines N+2..N+Q+1: Two integers A andB (1 ≤ABN), representing therange of cows from A toB inclusive.

Output

Lines 1..Q: Each linecontains a single integer that is a response to a reply andindicates the difference in height between the tallest and shortestcow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0


POJ不能用log2,不知道为什么,于是手打了一个,应该还快点。

inline long log2(long a)
{
    long ans = 0;
    while (a>>=1){ans++;}
    return ans;
}

#include <iostream>
//#include <cmath>
using std::cout;
using std::cin;
#define Max(a,b) (a>b?a:b)
#define Min(a,b) (a<b?a:b)
long n;long q;
long f[50010][20];
long f2[50010][20];

inline long log2(long a)
{
    long ans = 0;
    while (a>>=1){ans++;}
    return ans;
}

long gmax(long l,long r)
{
    long k = long(log2(r-l+1));
    
    return Max(f[l][k],f[r-(1<<k)+1][k]);
}

long gmin(long l,long r)
{
    long k = long(log2(r-l+1));
    
    return Min(f2[l][k],f2[r-(1<<k)+1][k]);    
}

int main()
{
    scanf("%ld%ld",&n,&q);
    for (long i=1;i<n+1;i++)
    {
        long h;
        scanf("%ld",&h);        
        f[i][0] = h;
        f2[i][0] = h;
    }
    for (long j=1;(1<<j)<=n;j++)
        for (long i=1;i<=n-(1<<j)+1;i++)
        {
            f[i][j] = Max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
            f2[i][j] = Min(f2[i][j-1],f2[i+(1<<(j-1))][j-1]);
        }
    for (long i=1;i<q+1;i++)
    {
        long a;long b;
        scanf("%ld%ld",&a,&b);
        printf("%ld\n",gmax(a,b)-gmin(a,b));
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj 3264 Balanced Lineup(RMQ求区间最值)

Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 29631   Accepted:...

POJ-3264 Balanced Lineup【RMQ】

题目链接:http://poj.org/problem?id=3264 题目大意: 一个农夫有N头牛,每头牛的高度不同,我们需要找出最高的牛和最低的牛的高度差。 解题思路: 我是用RMQ写的。...

RMQ的ST算法学习小记 Poj 3264 Balanced Lineup

RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j 主要方法及复杂度(处理复杂度和查询复杂度)如下: 1.线...

POJ 3264 Balanced Lineup (RMQ)

Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same ...

poj 3264 Balanced Lineup (RMQ))

Balanced Lineup Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Sub...

线段树 ST算法 RMQ poj 3264 Balanced Lineup 解题报告

线段树 ST算法 RMQ poj 3264 Balanced Lineup 解题报告

Pku oj 3264 Balanced Lineup(RMQ)

Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 46162   Accepted:...

poj 3264 Balanced Lineup (简单 RMQ )

Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 29174   Accepted:...

POJ 3264 Balanced Lineup (区间最值 RMQ模板/线段树)

题目地址:点击打开链接 区间最值查询,RMQ和线段树都可以。 RMQ代码: #include #include #include #include using namespace std; c...

poj 3264 Balanced Lineup(RMQ线段树)

http://poj.org/problem?id=3264 题意:输入n个数,有m个询问,每个询问输入l,r,求区间[ l , r ]之间最大数与最小数之差。 思路: 我用的线段树过的,节点增加两个...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)