# 【RMQ】Balanced Lineup

262人阅读 评论(0)

BalancedLineup
 Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 17371 Accepted: 8044 Case TimeLimit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N≤ 50,000) always line up in the same order. One day Farmer Johndecides to organize a game of Ultimate Frisbee with some of thecows. To keep things simple, he will take a contiguous range ofcows from the milking lineup to play the game. However, for all thecows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000)potential groups of cows and their heights (1 ≤height ≤1,000,000). For each group, he wants your help to determine thedifference in height between the shortest and the tallest cow inthe group.

Input

Line 1: Two space-separatedintegers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer thatis the height of cowi
Lines N+2..N+Q+1: Two integers A andB (1 ≤ABN), representing therange of cows from A toB inclusive.

Output

Lines 1..Q: Each linecontains a single integer that is a response to a reply andindicates the difference in height between the tallest and shortestcow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2


Sample Output

6
3
0


POJ不能用log2，不知道为什么，于是手打了一个，应该还快点。

inline long log2(long a)
{
long ans = 0;
while (a>>=1){ans++;}
return ans;
}

#include <iostream>
//#include <cmath>
using std::cout;
using std::cin;
#define Max(a,b) (a>b?a:b)
#define Min(a,b) (a<b?a:b)
long n;long q;
long f[50010][20];
long f2[50010][20];

inline long log2(long a)
{
long ans = 0;
while (a>>=1){ans++;}
return ans;
}

long gmax(long l,long r)
{
long k = long(log2(r-l+1));

return Max(f[l][k],f[r-(1<<k)+1][k]);
}

long gmin(long l,long r)
{
long k = long(log2(r-l+1));

return Min(f2[l][k],f2[r-(1<<k)+1][k]);
}

int main()
{
scanf("%ld%ld",&n,&q);
for (long i=1;i<n+1;i++)
{
long h;
scanf("%ld",&h);
f[i][0] = h;
f2[i][0] = h;
}
for (long j=1;(1<<j)<=n;j++)
for (long i=1;i<=n-(1<<j)+1;i++)
{
f[i][j] = Max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
f2[i][j] = Min(f2[i][j-1],f2[i+(1<<(j-1))][j-1]);
}
for (long i=1;i<q+1;i++)
{
long a;long b;
scanf("%ld%ld",&a,&b);
printf("%ld\n",gmax(a,b)-gmin(a,b));
}
return 0;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：326940次
• 积分：7188
• 等级：
• 排名：第3088名
• 原创：419篇
• 转载：14篇
• 译文：0篇
• 评论：32条
文章分类
最新评论