缓存与数据库一致性保证

原创 2017年11月15日 07:19:58

本文主要讨论这么几个问题:

1)啥时候数据库和缓存中的数据会不一致

2)不一致优化思路

3)如何保证数据库与缓存的一致性

 

一、需求缘起

上一篇《缓存架构设计细节二三事》(点击查看)引起了广泛的讨论,其中有一个结论:当数据发生变化时,“先淘汰缓存,再修改数据库”这个点是大家讨论的最多的。


上篇文章得出这个结论的依据是,由于操作缓存与操作数据库不是原子的,非常有可能出现执行失败。


假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致【如上图:db中是新数据,cache中是旧数据】。

 


假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss【如上图:cache中无数据,db中是旧数据】。

 

结论:先淘汰缓存,再写数据库。

 

引发大家热烈讨论的点是“先操作缓存,在写数据库成功之前,如果有读请求发生,可能导致旧数据入缓存,引发数据不一致”,这就是本文要讨论的主题。

 

二、为什么数据会不一致

回顾一下上一篇文章中对缓存、数据库进行读写操作的流程。

写流程:

1)先淘汰cache

2)再写db

读流程:

1)先读cache,如果数据命中hit则返回

2)如果数据未命中miss则读db

3)将db中读取出来的数据入缓存

 

什么情况下可能出现缓存和数据库中数据不一致呢?


在分布式环境下,数据的读写都是并发的,上游有多个应用,通过一个服务的多个部署(为了保证可用性,一定是部署多份的),对同一个数据进行读写,在数据库层面并发的读写并不能保证完成顺序,也就是说后发出的读请求很可能先完成(读出脏数据):

a)发生了写请求AA的第一步淘汰了cache(如上图中的1

bA的第二步写数据库,发出修改请求(如上图中的2

c)发生了读请求BB的第一步读取cache,发现cache中是空的(如上图中的步骤3

dB的第二步读取数据库,发出读取请求,此时A的第二步写数据还没完成,读出了一个脏数据放入cache(如上图中的步骤4

在数据库层面,后发出的请求4比先发出的请求2先完成了,读出了脏数据,脏数据又入了缓存,缓存与数据库中的数据不一致出现了

 

三、不一致优化思路

能否做到先发出的请求一定先执行完成呢?常见的思路是串行化,今天将和大家一起探讨串行化这个点。

先一起细看一下,在一个服务中,并发的多个读写SQL一般是怎么执行的


上图是一个service服务的上下游及服务内部详细展开,细节如下:

1service的上游是多个业务应用,上游发起请求对同一个数据并发的进行读写操作,上例中并发进行了一个uid=1的余额修改(写)操作与uid=1的余额查询(读)操作

2service的下游是数据库DB,假设只读写一个DB

3)中间是服务层service,它又分为了这么几个部分

3.1)最上层是任务队列

3.2)中间是工作线程,每个工作线程完成实际的工作任务,典型的工作任务是通过数据库连接池读写数据库

3.3)最下层是数据库连接池,所有的SQL语句都是通过数据库连接池发往数据库去执行的

 

工作线程的典型工作流是这样的:

void work_thread_routine(){

Task t = TaskQueue.pop(); // 获取任务

// 任务逻辑处理,生成sql语句

DBConnection c = CPool.GetDBConnection(); // DB连接池获取一个DB连接

c.execSQL(sql); // 通过DB连接执行sql语句

CPool.PutDBConnection(c); // DB连接放回DB连接池

}

 

提问:任务队列其实已经做了任务串行化的工作,能否保证任务不并发执行?

答:不行,因为

11个服务有多个工作线程,串行弹出的任务会被并行执行

21个服务有多个数据库连接,每个工作线程获取不同的数据库连接会在DB层面并发执行

 

提问:假设服务只部署一份,能否保证任务不并发执行?

答:不行,原因同上

 

提问:假设1个服务只有1条数据库连接,能否保证任务不并发执行?

答:不行,因为

11个服务只有1条数据库连接,只能保证在一个服务器上的请求在数据库层面是串行执行的

2)因为服务是分布式部署的,多个服务上的请求在数据库层面仍可能是并发执行的

 

提问:假设服务只部署一份,且1个服务只有1条连接,能否保证任务不并发执行?

答:可以,全局来看请求是串行执行的,吞吐量很低,并且服务无法保证可用性

 

完了,看似无望了,

1)任务队列不能保证串行化

2)单服务多数据库连接不能保证串行化

3)多服务单数据库连接不能保证串行化

4)单服务单数据库连接可能保证串行化,但吞吐量级低,且不能保证服务的可用性,几乎不可行,那是否还有解?

 

退一步想,其实不需要让全局的请求串行化,而只需要“让同一个数据的访问能串行化”就行

在一个服务内,如何做到“让同一个数据的访问串行化”,只需要“让同一个数据的访问通过同一条DB连接执行”就行。

如何做到“让同一个数据的访问通过同一条DB连接执行”,只需要“在DB连接池层面稍微修改,按数据取连接即可”

获取DB连接的CPool.GetDBConnection()【返回任何一个可用DB连接】改为

CPool.GetDBConnection(longid)【返回id取模相关联的DB连接】

 

这个修改的好处是:

1)简单,只需要修改DB连接池实现,以及DB连接获取处

2)连接池的修改不需要关注业务,传入的id是什么含义连接池不关注,直接按照id取模返回DB连接即可

3)可以适用多种业务场景,取用户数据业务传入user-id取连接,取订单数据业务传入order-id取连接即可

这样的话,就能够保证同一个数据例如uid在数据库层面的执行一定是串行的

 

稍等稍等,服务可是部署了很多份的,上述方案只能保证同一个数据在一个服务上的访问,在DB层面的执行是串行化的,实际上服务是分布式部署的,在全局范围内的访问仍是并行的,怎么解决呢?能不能做到同一个数据的访问一定落到同一个服务呢?

 

四、能否做到同一个数据的访问落在同一个服务上?

上面分析了服务层service的上下游及内部结构,再一起看一下应用层上下游及内部结构


上图是一个业务应用的上下游及服务内部详细展开,细节如下:

1)业务应用的上游不确定是啥,可能是直接是http请求,可能也是一个服务的上游调用

2)业务应用的下游是多个服务service

3)中间是业务应用,它又分为了这么几个部分

3.1)最上层是任务队列【或许web-server例如tomcat帮你干了这个事情了】

3.2)中间是工作线程【或许web-server的工作线程或者cgi工作线程帮你干了线程分派这个事情了】,每个工作线程完成实际的业务任务,典型的工作任务是通过服务连接池进行RPC调用

3.3)最下层是服务连接池,所有的RPC调用都是通过服务连接池往下游服务去发包执行的

 

工作线程的典型工作流是这样的:

voidwork_thread_routine(){

Task t = TaskQueue.pop(); // 获取任务

// 任务逻辑处理,组成一个网络包packet,调用下游RPC接口

ServiceConnection c = CPool.GetServiceConnection(); // Service连接池获取一个Service连接

c.Send(packet); // 通过Service连接发送报文执行RPC请求

CPool.PutServiceConnection(c); // Service连接放回Service连接池

}

 

似曾相识吧?没错,只要对服务连接池进行少量改动:

获取Service连接的CPool.GetServiceConnection()【返回任何一个可用Service连接】改为

CPool.GetServiceConnection(longid)【返回id取模相关联的Service连接】

这样的话,就能够保证同一个数据例如uid的请求落到同一个服务Service上。

                                                                                  

五、总结

由于数据库层面的读写并发,引发的数据库与缓存数据不一致的问题(本质是后发生的读请求先返回了),可能通过两个小的改动解决:

1)修改服务Service连接池,id取模选取服务连接,能够保证同一个数据的读写都落在同一个后端服务上

2)修改数据库DB连接池,id取模选取DB连接,能够保证同一个数据的读写在数据库层面是串行的

 

六、遗留问题

提问:取模访问服务是否会影响服务的可用性?

答:不会,当有下游服务挂掉的时候,服务连接池能够检测到连接的可用性,取模时要把不可用的服务连接排除掉。

 

提问:取模访问服务 取模访问DB,是否会影响各连接上请求的负载均衡?

答:不会,只要数据访问id是均衡的,从全局来看,由id取模获取各连接的概率也是均等的,即负载是均衡的。

 

提问:要是数据库的架构做了主从同步,读写分离:写请求写主库,读请求读从库也有可能导致缓存中进入脏数据呀,这种情况怎么解决呢(读写请求根本不落在同一个DB上,并且读写DB有同步时延)?

版权声明:本文为博主原创文章,未经博主允许不得转载。

缓存与数据库一致性保证

本文主要讨论这么几个问题: (1)啥时候数据库和缓存中的数据会不一致 (2)不一致优化思路 (3)如何保证数据库与缓存的一致性   一、需求缘起 上一篇《缓存架构设计细节二三事》(点击查看...
  • liudezhicsdn
  • liudezhicsdn
  • 2016年03月30日 23:49
  • 1953

如何保持数据库和缓存的一致性

更新缓存策略失效:应用程序从cache取数据,没有得到,则从数据库取数据,然后将数据放入cache 命中:应用从cache取数据,若取到则返回 更新:把数据更新到数据库,然后使cache失效 ...
  • sinat_16712671
  • sinat_16712671
  • 2017年07月26日 11:01
  • 1257

CAS指令与MESI缓存一致性协议

CAS(Compare-And-Swap)指令是并行程序设计最基础的基石,随着越来越多的本本都用上了双核,这个世界已经快速步入并行计算时代,CAS指令发挥的作用也就越来越大。CAS指令,在Intel ...
  • liu251
  • liu251
  • 2011年09月22日 19:39
  • 2013

解决缓存与数据库一致性问题

1、引用缓存的好处         1)提高性能;2)减缓数据库压力;3)提高系统并发处理能力 2、引用缓存的问题         1)处理逻辑变得复杂;2)使用不当,容易引起缓存和数据库数据不一致的...
  • qq_21033663
  • qq_21033663
  • 2017年02月21日 11:18
  • 1601

CAS原理之缓存一致性

现代的CPU提供了特殊的指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定。...
  • yu280265067
  • yu280265067
  • 2016年03月26日 15:06
  • 2029

缓存与DB在秒杀业务中的一致性保障问题

1.缓存与DB在秒杀业务中的一致性保障业务设计架构图:2.资源锁定与回滚策略业务域划分: 库存概念:下单减库存、支付减库存 交易概念:下单(未支付订单)、已支付、退款未发货资源行为划分: 资源锁...
  • zhengzhihust
  • zhengzhihust
  • 2016年12月07日 21:40
  • 785

redis中缓存的数据与数据库数据一致性的方案(好)

方式1:数据库保存数据,redis不persist redis启动后,从数据库加载数据 不要求强一致实时性的读请求,都由redis处理 要求强一致实时性的读请求,由数据库处理 写请求有2种处理...
  • AlbertFly
  • AlbertFly
  • 2017年01月09日 15:07
  • 2742

redis系列之数据库与缓存数据一致性解决方案

redis系列之数据库与缓存数据一致性解决方案 数据库与缓存读写模式策略 写完数据库后是否需要马上更新缓存还是直接删除缓存? (1)、如果写数据库的值与更新到缓存值是一样的,不需要经过任何的计算,可以...
  • simba_1986
  • simba_1986
  • 2017年09月03日 17:09
  • 3230

Java的多线程机制:缓存一致性和CAS

一、总线锁定和缓存一致性 这是两个操作系统层面的概念。随着多核时代的到来,并发操作已经成了很正常的现象,操作系统必须要有一些机制和原语,以保证某些基本操作的原子性,比如处理器需要保证读一个字节或...
  • Zerohuan
  • Zerohuan
  • 2015年10月18日 21:21
  • 1765

缓存一致性和访存顺序的区别

缓存一致性和访存顺序的区别
  • jdygrdzh
  • jdygrdzh
  • 2015年09月25日 17:10
  • 862
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:缓存与数据库一致性保证
举报原因:
原因补充:

(最多只允许输入30个字)