线段树 矩形并周长 picture

本文详细介绍了如何使用线段树解决周长并的问题,包括关键的数据结构定义及核心算法实现。通过一个具体示例,展示了周长并相较于面积并在代码实现上的区别,特别关注边的合并处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线段树 我还是首推胡浩大牛的博客http://www.notonlysuccess.com/

线段树中扫描线一直是我比较吃力的一种题。矩形面积并,周长并,特别是周长并,一直无法解决,想不明白,现在终于做出来一个周长并的题目了, 是不是我的线段树水平又有了一点提高呢?

代码不长,写起来老麻烦了!

周长并与面积并不同的是,周长并需要记录竖着的边的情况。也就是说,需要记录边的合并问题,代码中分别使用lbd和rbd记录是否有边,如果合并的都有边,那么,合并之后的竖着的边的总数就要减2.

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 10010

struct note
{
    int a,b,h,s;
    note(){}
    note(int l,int r,int c,int d):a(l) , b(r) , h(c) , s(d) {}
}data[N];

///线段树
#define lson l ,m ,rt<<1
#define rson m+1,r,rt<<1|1
#define fmid (l+r)>>1

#define M 22222
int len[M<<2],memseg[M<<2],lbd[M<<2],rbd[M<<2],cnt[M<<2];

void Push_up(int rt,int l,int r)
{
    if(cnt[rt])
    {
        lbd[rt] = rbd[rt] = 1;
        memseg[rt] = 2;
        len[rt] = r-l+1;
    }else if(l == r) lbd[rt] = rbd[rt] = memseg[rt] = len[rt] = 0;
    else
    {
        lbd[rt] = lbd[rt<<1];
        rbd[rt] = rbd[rt<<1|1];
        len[rt] = len[rt<<1] + len[rt<<1|1];
        memseg[rt] = memseg[rt<<1] + memseg[rt<<1|1];
        if(rbd[rt<<1] && lbd[rt<<1|1] ) memseg[rt] -= 2;
    }
}
/**
*矩形有个特点,已经出现的更新,必然会再次出现,这样的话,延迟标记也就可以不用push_down()!
*/
void update(int lx,int rx,int s,int l,int r,int rt)
{
    if(lx <= l && rx >= r)
    {
        cnt[rt] += s;
        Push_up(rt,l,r);
        return;
    }
    int m = fmid;
    if(lx <= m) update(lx,rx,s,lson);
    if(m < rx) update(lx,rx,s,rson);
    Push_up(rt,l,r);
}
//////////////////////////////////////

bool cmp(const note a,const note b)
{
    return a.h < b.h || (a.h == b.h && a.s < b.s); ///?????排序的时候可以不对s进行比较
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        int x,y,xx,yy;
        int ll = 10000,rr = -10000;
        int m = 0;
        for(int i = 0;i < n;i++)
        {
            scanf("%d%d%d%d",&x,&y,&xx,&yy);
            ll = min(ll,x);
            rr = max(rr,xx);
            data[m++] = note(x,xx,y,1);
            data[m++] = note(x,xx,yy,-1);
        }
        sort(data,data+m,cmp);

        data[m].h = data[m-1].h;
        int ret = 0,last = 0;
        for(int i = 0;i < m;i++)
        {
            if(data[i].a != data[i].b) update(data[i].a ,data[i].b-1,data[i].s,ll,rr,1);
            ret += abs(len[1] - last);
            ret += memseg[1] * (data[i+1].h - data[i].h);
            last = len[1];
        }
        printf("%d\n",ret);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值