机器学习——logistic回归

何为回归?假设有一系列数据点,我们使用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归。利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,并以此进行分类。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。

Logistic回归的一般过程如下。

(1)收集数据

(2)准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式最佳。

(3)分析数据

(4)训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。

(5)测试算法:一旦训练步骤完成,分类将会很快。

(6)使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其它分析工作。

在这里,我们需要一个函数,它能够接受所有的输入然后预测出类别。与单位阶跃函数相比,Sigmoid函数也具备类似的性质,且数学上更易处理。它的具体计算公式如下:


当z为0时,Sigmoid函数只为0.5;随着z的增大,对应的Sigmoid值将逼近于1;而随着z的减小,Sigmoid值将逼近于0。

如果横坐标的刻度足够大,Sigmoid函数看起来很像一个阶跃函数。

为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结果值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据被分入1类,小于0.5即被归入0类。所以,Logistic回归也可以被看成是一种概率估计。

现在分类器的函数已经确定了,接下来的问题就是:最佳的回归系数是多少?

Sigmoid函数的输入记为z,由以下公式得出:

如果采用向量的写法,上述公式可以写成,它表示将这两个数值向量对应元素相乘,然后全部加起来即得到z值。其中的向量X是分类器的输入数据,向量w是我们要找的最佳参数(系数),从而使得分类器尽可能地精确。为了寻找该最佳参数,需要用到最优化理论的一些知识。

首先介绍梯度上升算法,该算法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。如果梯度记为,则函数的梯度由下式表示:

这个梯度意味着要沿x的方向移动,沿y的方向移动。其中函数f(x,y)必须要在待计算的点上有定义并且可微。一个具体例子如下:

梯度上升算法到达每个点后都会重新估计移动的方向。从P0开始,计算完该点的梯度,函数就根据梯度移动到下一点P1。在P1点,梯度再次被重新计算,并沿新的梯度方向移动到P2。如此循环迭代,直到满足停止条件。迭代的过程中,梯度算子总是保证我们能选取到最佳的移动方向。

梯度算子总是指向函数值增长最快的方向。这里所说的是移动方向,而未提到移动量的大小。该量称为步长,记做。用向量来表示的话,梯度上升算法的迭代公式如下:

该公式将一直被迭代执行,直到达到某个停止条件为止,比如迭代次数达到某个指定值或算法误差达到一定范围。

下面是一个Logistic回归分类器的应用例子,我们所采用的数据集如下:

下面是梯度上升算法的伪代码:

每个回归系数初始化为1

重复R次:

计算整个数据集的梯度

使用alpha´gradient更新回归系数的向量

返回回归系数

下面是具体代码实现:

def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')	#打开存有数据集的文件
    for line in fr.readlines():	#将数据按行进行解析
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):	#Sigmoid函数实现
    return 1.0/(1+exp(-inX))
#两个输入分别是特征矩阵和类别标签列表
def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #转换为NumPy 矩阵
    labelMat = mat(classLabels).transpose()	#转换为NumPy 矩阵
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500	#设定迭代次数
    weights = ones((n,1))	#初始化权重为1
    for k in range(maxCycles):              
        h = sigmoid(dataMatrix*weights)     #h是一个(m1)的列向量
        error = (labelMat - h)              #计算误差,error也是(m1)的列向量
        weights = weights + alpha * dataMatrix.transpose()* error #更新权值
    return weights

上述代码中将输入数据集转换为NumPy中的矩阵,是因为后面会用到对应的转置操作,这样执行起来更方便。

下面的代码将使用梯度上升算法绘制分类的决策边界:

# weights为使用gradAscent函数计算所得的权值向量
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

    代码执行效果如下:

从分类结果来看还是比较理想的,绝大部分的数据点都被分配到了合适的分类之中。这个方法的缺点是计算量较大,下面将针对这种情况对算法做出适当的改进,从而使它可以用在真实数据集上。

梯度上升算法在每次更新回归系数时都需要遍历整个数据集,在数据量较小时尚可,但如果有大量的样本和特征,那么该方法的计算复杂度就太高了。一种改进的方法是一次仅用一个样本点来更新回归系数,该方法称为随机梯度上升算法。由于可以在新样本到来时对分类器进行增量式更新,因而它是一种在线学习算法。与之对应的算法称为“批处理”或“离线学习算法”。

随机梯度上升算法的伪代码如下:

所有回归系数初始化为1

对数据集中每个样本

计算该样本的梯度

使用alpha´gradient更新回归系数值

返回回归系数值

以下是具体代码实现:

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

与前面的梯度上升算法相比,这里的h和error都是数值,而不再是向量;而且也不再有矩阵转换操作。

使用这种方法进行类边界绘制的效果如下:

当然直接拿这个结果和前面的结果进行比较是不合理的,毕竟前面的结果是在整个数据集上迭代了500次才得到的。

我们可以对随机梯度上升代码做如下的改进:

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #改进处1
            randIndex = int(random.uniform(0,len(dataIndex)))#改进出2
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights += alpha * dot(error,dataMatrix[randIndex])
            del(dataIndex[randIndex])
    return weights

上述代码的执行效果如下:

从图中的分类效果可以看出,该方法的结果与第一种方法相差不多,但是所用的计算量更少。

在第一个改进的地方,alpha在每次迭代的时候都会调整。虽然alpha会随着迭代次数不断减小,但永远不会减少到0,这样可以保证在多次迭代后新数据仍然具有一定的影响。如果要处理的问题是动态变化的,那么可以适当加大上述常数项,来确保新的值获得更大的回归系数。第二个改进处通过随机选取样本来更新回归系数,这样可以减少迭代期间的周期性波动。而且算法中还增加了一个确定迭代次数的参数,方便使用者进行调节。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值