题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=1568
Fibonacci的通项公式:
F(n)=(1/√5)*[((1+√5)/2)^n-((1-√5)/2)^n]
(1-√5)/2很小,所以当n大的时候,((1-√5)/2)^n为0,可以忽律不计
可以通过打表得出前20项都是小于等于4位,直接输出。
后面通过取10的对数,然后去掉整数部分,然后取10的指数,去前四位即可
代码如下:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <queue>
using namespace std;
/*
freopen("input.txt", "r", stdin); //读数据
freopen("output.txt", "w", stdout); //注释掉此句则输出到控制台
*/
const double xh=sqrt(5.0);
int a[26];
int main()
{
int i,n;
double temp;
a[0]=0;a[1]=1;
for(i=2;i<=20;i++)
a[i]=a[i-1]+a[i-2];
while(cin>>n)
{
if(n<=20)//打表可知道,前20位都小于等于4位,直接输出
{
printf("%d\n",a[n]);
continue;
}
temp=n*log10((1+xh)/2)+log10(1/xh);//an取以10为底的对数
temp-=floor(temp);//去掉整数部分,整数部分表示an后面有多少个0,去掉使pow不越界
temp=pow(10.0,temp);//指数
while(temp<1000)
temp*=10;
printf("%d\n",(int)(temp));
}
return 520;
}