题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1214
刚开始一直在想暴利解决。让程序自动去调换,记录次数!汗颜!!!
这题就是在求一串数在每次只能对调相邻两位时,要得到其逆序最少要移动多少次。
在直线上移动很简单,类似于冒泡排序的方法,一个数不断向上冒,直到最终位置。不难得到其需要移动的次数公式为n*(n-1)/2。其中n为总点数。
那么在圆环上移动又会如何呢?应该会不一样这是我们直观的感受。事实也是如此,移动的过程是将圆环分为两段,分别移动。那么又在何处分段呢?
答案是尽量使两段长度相等。
为啥?证明如下:
设n为总长度,分为两段,长度分别为a、b。总次数=a*(a-1)/2+b*(b-1)/2=a*(a-1)/2+(n-a)*(n-a-1)/2=(2*a^2-2*n*a+n^2)/2。
其中n为常量,a为变量。二次曲线开口向上,最小值对应的a=-(-2*n)/(2*2)=n/2。显然a要求整数。
借鉴于:http://blog.csdn.net/lulipeng_cpp/article/details/7609259
代码如下:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
using namespace std;
const int N=2011;
typedef long long LL;
int main()
{
int i,j,n;
while(cin>>n)
{
int a=n/2;
int b=n-a;
cout<<a*(a-1)/2+b*(b-1)/2<<endl;
}
return 0;
}