看到高手的线性筛素数方法

const int N = 25600000;
bool a[N];
int p[N];
int n;

void Prime1() {
    memset(a, 0, n * sizeof(a[0]));
    int num = 0, i, j;
    for(i = 2; i < n; ++i) if(!a[i]) {
        p[num++] = i;
        for(j = i+i; j < n; j +=i) {
            a[j] = 1;
        }
    }
}

void Prime2() {
    memset(a, 0, n*sizeof(a[0]));
    int num = 0, i, j;
    for(i = 2; i < n; ++i) {
        if(!(a[i])) p[num++] = i;
        for(j = 0; (j<num && i*p[j]<n); ++j) {
            a[i*p[j]] = 1;
            if(!(i%p[j])) break;
        }
    }
}

测试:

[0, 100000) 范围内的素数
第一种素数筛法 0 毫秒
第二种素数筛法 0 毫秒

[0, 200000) 范围内的素数
第一种素数筛法 15 毫秒
第二种素数筛法 0 毫秒

[0, 400000) 范围内的素数
第一种素数筛法 16 毫秒
第二种素数筛法 15 毫秒

[0, 800000) 范围内的素数
第一种素数筛法 47 毫秒
第二种素数筛法 16 毫秒

[0, 1600000) 范围内的素数
第一种素数筛法 62 毫秒
第二种素数筛法 63 毫秒

[0, 3200000) 范围内的素数
第一种素数筛法 297 毫秒
第二种素数筛法 109 毫秒

[0, 6400000) 范围内的素数
第一种素数筛法 922 毫秒
第二种素数筛法 266 毫秒

[0, 12800000) 范围内的素数
第一种素数筛法 2187 毫秒
第二种素数筛法 563 毫秒

[0, 25600000) 范围内的素数
第一种素数筛法 4828 毫秒
第二种素数筛法 1187 毫秒

证明:任何一个合数只被标记一次。
     
可以试着执行下这个程序的流程,就明白了

怎么样 还行吧?
什么,觉得这个程序效率上没多大提升,没有什么用?
a[]改成int类型,然后
void Prime2() {
    memset(a, 0, n*sizeof(a[0]));
    int num = 0, i, j;
    for(i = 2; i < n; ++i) {
        if(!(a[i])) p[num++] = i;
        for(j = 0; (j<num && i*p[j]<n && (p[j]<=a[i]||a[i]==0)); ++j) {
            a[i*p[j]] = p[j];
        }
    }
}
这样一来a[i]将记录i的最小质因子
那么[0, n)内的数的因式分解就可以... 嘿嘿
o(
质因子个数)求任意数因式分解:
void factor(int x) {
    while(a[x] != 0) {
        printf("%d/n", a[x]);
        x /= a[x];
    }
    printf("%d/n", x);

线性筛法(也称为欧拉筛法)是一种高效的求解素数方法,其时间复杂度为 O(n),适用于大规模数据的素数筛选。相较于埃拉托斯特尼筛法(埃式筛),线性筛法通过避免重复标记来提高效率,确保每个合数只被其最小的质因数筛除一次。 以下是一个使用 C 语言实现线性筛法求素数的完整示例代码: ```c #include <stdio.h> #include <stdlib.h> #define MAXN 1000000 // 定义最大范围,可以根据需求调整 int main() { int n = 100000; // 设置上限,也可以通过输入获取 int *is_prime = (int *)malloc((n + 1) * sizeof(int)); // 用于标记是否为素数 int *primes = (int *)malloc(n * sizeof(int)); // 用于存储素数 int count = 0; // 记录素数个数 // 初始化标记数组 for (int i = 2; i <= n; i++) { is_prime[i] = 1; // 初始假设所有数都是素数 } // 线性筛法核心逻辑 for (int i = 2; i <= n; i++) { if (is_prime[i]) { primes[count++] = i; // 如果是素数,加入素数表 } // 遍历当前素数表中的素数,并标记合数 for (int j = 0; j < count && i * primes[j] <= n; j++) { is_prime[i * primes[j]] = 0; // 标记为非素数 if (i % primes[j] == 0) { break; // 保证每个合数只被其最小的质因数筛除 } } } // 输出所有素数 printf("Prime numbers up to %d:\n", n); for (int i = 0; i < count; i++) { printf("%d ", primes[i]); } printf("\n"); // 释放内存 free(is_prime); free(primes); return 0; } ``` ### 代码说明: 1. **初始化**:创建两个数组,`is_prime` 用于标记每个数是否为素数,`primes` 用于存储筛选出的素数。 2. **外层循环**:从 2 开始遍历到 n,如果当前数未被标记为非素数,则将其加入素数数组。 3. **内层循环**:利用当前素数数组中的素数,对当前数的倍数进行标记。关键点在于 `i % primes[j] == 0` 的判断,确保每个合数只被其最小的质因数筛除一次。 4. **输出结果**:最后输出所有筛选出的素数。 ### 优化特性: - 每个合数只会被其最小的质因数筛除一次,避免了重复操作。 - 时间复杂度为 O(n),适合处理大规模数据。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值