关闭

【数字图像处理】Canny边缘检测详解及编程实现

标签: 图像处理编程算法n2优化c
40095人阅读 评论(10) 收藏 举报

Canny边缘检测算法一直是边缘检测的经典算法。下面详细介绍Canny边缘检测算法的原理以及编程实现。

Canny边缘检测基本原理
(1)图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。
 (2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。
 (3)类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法。

Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:
(1)好的检测 - 算法能够尽可能多地标识出图像中的实际边缘。
(2)好的定位 - 标识出的边缘要尽可能与实际图像中的实际边缘尽可能接近。
(3)最小响应 - 图像中的边缘只能标识一次,并且可能存在的图像雜訊不应标识为边缘。

Canny边缘检测算法的步骤

(1)去噪

任何边缘检测算法都不可能在未经处理的原始数据上很好地處理,所以第一步是对原始数据与高斯 mask 作卷积,得到的图像与原始图像相比有些轻微的模糊(blurred)。这样,单独的一个像素雜訊在经过高斯平滑的图像上变得几乎没有影响。

(2)用一阶偏导的有限差分来计算梯度的幅值和方向。

(3)对梯度幅值进行非极大值抑制。

仅仅得到全局的梯度并不足以确定边缘,因此为确定边缘,必须保留局部梯度最大的点,而抑制非极大值。(non-maxima suppression,NMS)
解决方法:利用梯度的方向。


四个扇区的标号为0到3,对应3*3邻域的四种可能组合。在每一点上,邻域的中心象素M与沿着梯度线的两个象素相比。如果M的梯度值不比沿梯度线的两个相邻象素梯度值大,则令M=0。

(4)用双阈值算法检测和连接边缘。

减少假边缘段数量的典型方法是对N[i,j]使用一个阈值。将低于阈值的所有值赋零值。但问题是如何选取阈值?
 解决方法:双阈值算法。双阈值算法对非极大值抑制图象作用两个阈值τ1和τ2,且2τ1≈τ2,从而可以得到两个阈值边缘图象N1[i,j]和N2[i,j]。由于N2[i,j]使用高阈值得到,因而含有很少的假边缘,但有间断(不闭合)。双阈值法要在N2[i,j]中把边缘连接成轮廓,当到达轮廓的端点时,该算法就在N1[i,j]的8邻点位置寻找可以连接到轮廓上的边缘,这样,算法不断地在N1[i,j]中收集边缘,直到将N2[i,j]连接起来为止。

在连接边缘的时候,用数组模拟队列的实现。以进行8-连通域搜索。

更详细的资料请参考维基百科:http://zh.wikipedia.org/wiki/Canny%E7%AE%97%E5%AD%90

下面是我编程实现的Canny边缘检测代码,如有错误,请大家包涵、指正:

I = imread('rice.png');
I = double(I);
[height,width] = size(I);
J = I;

conv = zeros(5,5);%高斯卷积核
sigma = 1;%方差
sigma_2 = sigma * sigma;%临时变量
sum = 0;
for i = 1:5
    for j = 1:5
        conv(i,j) = exp((-(i - 3) * (i - 3) - (j - 3) * (j - 3)) / (2 * sigma_2)) / (2 * 3.14 * sigma_2);%高斯公式
        sum = sum + conv(i,j);
    end
end
conv = conv./sum;%标准化

%对图像实施高斯滤波
for i = 1:height
    for j = 1:width
        sum = 0;%临时变量
        for k = 1:5
            for m = 1:5
                if (i - 3 + k) > 0 && (i - 3 + k) <= height && (j - 3 + m) > 0 && (j - 3 + m) < width
                    sum = sum + conv(k,m) * I(i - 3 + k,j - 3 + m);
                end
            end
        end
        J(i,j) = sum;
    end
end
figure,imshow(J,[])
title('高斯滤波后的结果')
%求梯度
dx = zeros(height,width);%x方向梯度
dy = zeros(height,width);%y方向梯度
d = zeros(height,width);
for i = 1:height - 1
    for j = 1:width - 1
        dx(i,j) = J(i,j + 1) - J(i,j);
        dy(i,j) = J(i + 1,j) - J(i,j);
        d(i,j) = sqrt(dx(i,j) * dx(i,j) + dy(i,j) * dy(i,j));
    end
end
figure,imshow(d,[])
title('求梯度后的结果')

%局部非极大值抑制
K = d;%记录进行非极大值抑制后的梯度
%设置图像边缘为不可能的边缘点
for j = 1:width
    K(1,j) = 0;
end
for j = 1:width
    K(height,j) = 0;
end
for i = 2:width - 1
    K(i,1) = 0;
end
for i = 2:width - 1
    K(i,width) = 0;
end

for i = 2:height - 1
    for j = 2:width - 1
        %当前像素点的梯度值为0,则一定不是边缘点
        if d(i,j) == 0
            K(i,j) = 0;
        else
            gradX = dx(i,j);%当前点x方向导数
            gradY = dy(i,j);%当前点y方向导数
            gradTemp = d(i,j);%当前点梯度
            %如果Y方向幅度值较大
            if abs(gradY) > abs(gradX)
                weight = abs(gradX) / abs(gradY);%权重
                grad2 = d(i - 1,j);
                grad4 = d(i + 1,j);
                %如果x、y方向导数符号相同
                %像素点位置关系
                %g1 g2
                %   C
                %   g4 g3
                if gradX * gradY > 0
                    grad1 = d(i - 1,j - 1);
                    grad3 = d(i + 1,j + 1);
                else
                    %如果x、y方向导数符号反
                    %像素点位置关系
                    %   g2 g1
                    %   C
                    %g3 g4
                    grad1 = d(i - 1,j + 1);
                    grad3 = d(i + 1,j - 1);
                end
            %如果X方向幅度值较大
            else
                weight = abs(gradY) / abs(gradX);%权重
                grad2 = d(i,j - 1);
                grad4 = d(i,j + 1);
                %如果x、y方向导数符号相同
                %像素点位置关系
                %g3
                %g4 C g2
                %     g1
                if gradX * gradY > 0
                    grad1 = d(i + 1,j + 1);
                    grad3 = d(i - 1,j - 1);
                else
                    %如果x、y方向导数符号反
                    %像素点位置关系
                    %     g1
                    %g4 C g2
                    %g3
                    grad1 = d(i - 1,j + 1);
                    grad3 = d(i + 1,j - 1);
                end
            end
            %利用grad1-grad4对梯度进行插值
            gradTemp1 = weight * grad1 + (1 - weight) * grad2;
            gradTemp2 = weight * grad3 + (1 - weight) * grad4;
            %当前像素的梯度是局部的最大值,可能是边缘点
            if gradTemp >= gradTemp1 && gradTemp >= gradTemp2
                K(i,j) = gradTemp;
            else
                %不可能是边缘点
                K(i,j) = 0;
            end
        end
    end
end
figure,imshow(K,[])
title('非极大值抑制后的结果')

%定义双阈值:EP_MIN、EP_MAX,且EP_MAX = 2 * EP_MIN
EP_MIN = 12;
EP_MAX = EP_MIN * 2;
EdgeLarge = zeros(height,width);%记录真边缘
EdgeBetween = zeros(height,width);%记录可能的边缘点
for i = 1:height
    for j = 1:width
        if K(i,j) >= EP_MAX%小于小阈值,不可能为边缘点
            EdgeLarge(i,j) = K(i,j);
        else if K(i,j) >= EP_MIN
                EdgeBetween(i,j) = K(i,j);
            end
        end
    end
end
%把EdgeLarge的边缘连成连续的轮廓
MAXSIZE = 999999;
Queue = zeros(MAXSIZE,2);%用数组模拟队列
front = 1;%队头
rear = 1;%队尾
edge = zeros(height,width);
for i = 1:height
    for j = 1:width
        if EdgeLarge(i,j) > 0
            %强点入队
            Queue(rear,1) = i;
            Queue(rear,2) = j;
            rear = rear + 1;
            edge(i,j) = EdgeLarge(i,j);
            EdgeLarge(i,j) = 0;%避免重复计算
        end
        while front ~= rear%队不空
            %队头出队
            temp_i = Queue(front,1);
            temp_j = Queue(front,2);
            front = front + 1;
            %8-连通域寻找可能的边缘点
            %左上方
            if EdgeBetween(temp_i - 1,temp_j - 1) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i - 1,temp_j - 1) = K(temp_i - 1,temp_j - 1);
                EdgeBetween(temp_i - 1,temp_j - 1) = 0;%避免重复计算
                %入队
                Queue(rear,1) = temp_i - 1;
                Queue(rear,2) = temp_j - 1;
                rear = rear + 1;
            end
            %正上方
            if EdgeBetween(temp_i - 1,temp_j) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i - 1,temp_j) = K(temp_i - 1,temp_j);
                EdgeBetween(temp_i - 1,temp_j) = 0;
                %入队
                Queue(rear,1) = temp_i - 1;
                Queue(rear,2) = temp_j;
                rear = rear + 1;
            end
            %右上方
            if EdgeBetween(temp_i - 1,temp_j + 1) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i - 1,temp_j + 1) = K(temp_i - 1,temp_j + 1);
                EdgeBetween(temp_i - 1,temp_j + 1) = 0;
                %入队
                Queue(rear,1) = temp_i - 1;
                Queue(rear,2) = temp_j + 1;
                rear = rear + 1;
            end
            %正左方
            if EdgeBetween(temp_i,temp_j - 1) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i,temp_j - 1) = K(temp_i,temp_j - 1);
                EdgeBetween(temp_i,temp_j - 1) = 0;
                %入队
                Queue(rear,1) = temp_i;
                Queue(rear,2) = temp_j - 1;
                rear = rear + 1;
            end
            %正右方
            if EdgeBetween(temp_i,temp_j + 1) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i,temp_j + 1) = K(temp_i,temp_j + 1);
                EdgeBetween(temp_i,temp_j + 1) = 0;
                %入队
                Queue(rear,1) = temp_i;
                Queue(rear,2) = temp_j + 1;
                rear = rear + 1;
            end
            %左下方
            if EdgeBetween(temp_i + 1,temp_j - 1) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i + 1,temp_j - 1) = K(temp_i + 1,temp_j - 1);
                EdgeBetween(temp_i + 1,temp_j - 1) = 0;
                %入队
                Queue(rear,1) = temp_i + 1;
                Queue(rear,2) = temp_j - 1;
                rear = rear + 1;
            end
            %正下方
            if EdgeBetween(temp_i + 1,temp_j) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i + 1,temp_j) = K(temp_i + 1,temp_j);
                EdgeBetween(temp_i + 1,temp_j) = 0;
                %入队
                Queue(rear,1) = temp_i + 1;
                Queue(rear,2) = temp_j;
                rear = rear + 1;
            end
            %右下方
            if EdgeBetween(temp_i + 1,temp_j + 1) > 0%把在强点周围的弱点变为强点
                EdgeLarge(temp_i + 1,temp_j + 1) = K(temp_i + 1,temp_j + 1);
                EdgeBetween(temp_i + 1,temp_j + 1) = 0;
                %入队
                Queue(rear,1) = temp_i + 1;
                Queue(rear,2) = temp_j + 1;
                rear = rear + 1;
            end
        end
        %下面2行用于观察程序运行的状况
        i
        j
    end
end

figure,imshow(edge,[])
title('双阈值后的结果')

对图片rice.png进行处理后的结果如下:



14
0

猜你在找
【直播】机器学习&深度学习系统实战(唐宇迪)
【直播】Kaggle 神器:XGBoost 从基础到实战(冒教授)
【直播回放】深度学习基础与TensorFlow实践(王琛)
【直播】计算机视觉原理及实战(屈教授)
【直播】机器学习之凸优化(马博士)
【直播】机器学习之矩阵(黄博士)
【直播】机器学习之概率与统计推断(冒教授)
【直播】机器学习之数学基础
【直播】TensorFlow实战进阶(智亮)
【直播】深度学习30天系统实训(唐宇迪)
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1642926次
    • 积分:13770
    • 等级:
    • 排名:第867名
    • 原创:122篇
    • 转载:15篇
    • 译文:6篇
    • 评论:923条
    博客专栏
    公告
    博客已迁移至:http://xiajunhust.github.io/