- 博客(4482)
- 资源 (2)
- 收藏
- 关注
原创 【荐读IEEE TPAMI】基于模型的强化学习与独立想象力
在基于视觉的交互系统中,世界模型学习行动的后果。然而,在实际场景中,如自动驾驶,存在不可控制的动态,这些动态独立于或与行动信号稀疏相关,这使得学习有效的世界模型变得具有挑战性。为了解决这个问题,我们提出了Iso-Dream++,这是一种基于模型的强化学习方法,具有两个主要贡献。首先,我们优化了逆动力学,鼓励世界模型从环境混合的时空变化中隔离出可控制的状态转换。其次,我们基于解耦的潜在想象进行策略优化,我们将不可控制的状态滚动到未来,并将其与当前可控制的状态自适应地关联起来。
2024-05-18 19:15:00 1050
原创 【荐读IEEE TPAMI】无监督去雨:非对称对比学习与自相似性相遇
大多数现有的基于学习的去雨方法都是在合成的雨-清洁对上进行有监督训练的。合成雨与真实雨之间的领域差距使它们在复杂的真实雨场景中的泛化能力降低。此外,现有方法主要独立利用图像或雨层的属性,很少有方法考虑它们之间的相互排斥关系。为了解决这一困境,我们探索了每层内部的内在自相似性以及两层之间的相互排斥性,并提出了一种无监督的非局部对比学习(NLCL)去雨方法。非局部自相似性图像块作为正样本被紧密地拉在一起,而雨块作为负样本则被显著地推开,反之亦然。
2024-05-13 12:24:06 773
原创 TPAMI 2024 | E-Gaze: 基于事件相机的注视估计
近眼注视估计是一项将相邻相机捕获的眼睛录像映射到人凝视空间方向的任务。与传统的基于帧的相机不同,事件相机以高感知率、低延迟、稀疏异步数据输出和高动态范围为特点,非常适合记录快速的眼动。然而,由于数据特性的自然差异,基于帧的相机操作的算法和系统设计并不适用于基于事件的数据。在这项工作中,我们研究了基于事件的近眼数据流的模式,并提取眼睛特征以估计注视。首先,通过分析眼睛部分和运动,并利用事件的极性、空间和时间分布,我们引入了一个实时流水线来提取瞳孔特征。
2024-09-10 09:30:00 10
原创 TPAMI 2024 | 基于深度感知点扩散函数的光学像差校正
光学像差是基于真实镜头成像系统中的常见退化现象。光学像差是由光线在通过相机镜头的不同区域和不同入射角度时光路长度的差异引起的。当光学系统发生变化时,模糊和色差会表现出显著差异。本文通过改变少量镜头相关参数,设计了一种简单镜头的多波长、深度感知、空间变异四维点扩散函数(4D-PSFs)估计的可转移且有效的图像模拟系统。该图像模拟系统可以减轻数据集收集的开销,并利用计算成像原理进行有效的光学像差校正。
2024-09-10 09:30:00 5
转载 我不理解,找论文创新点很难吗?
大家是不是都感觉写学术论文真是无从下手啊!写文章之初最难的是找到一个不错的idea,这是非常重要的。这个比写作难的不止一点,如果你有idea的话写起来其实挺快的。主要是多看领域内顶刊文章,模仿别人文献的框架和写作思路,找几篇文献一段一段的模仿写作各个部分!模仿结构、论文框架、模仿数据图、模仿论文各个位置。但是科研新人,即使知道了方法,也依旧无法挖掘到好的idea。我的研一师弟,想要发一篇一区文章。...
2024-09-09 10:05:12 8
转载 ICML 2024 |多模态最新进展!单模态增益多模态学习,解决多模态和单模态学习目标梯度冲突问题...
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自:多模态机器学习与大模型作者单位:中国人民大学论文链接:https://arxiv.org/pdf/2405.17730代码链接:https://github.com/GeWu-Lab/MMPareto_ICML2024简介具有针对性的单模态学习目标的多模态学习方法在缓解多模态学习不平衡问题方面表现出了卓越的功效。然而,...
2024-09-09 10:05:12 27
原创 TPAMI 2024 | 基于小波近似感知残差网络的单图像去雨
在基于深度卷积神经网络(CNNs)的单图像去雨方面已经取得了巨大进展。大多数现有的深度去雨方法中,CNNs 旨在学习从雨图像到干净无雨图像的直接映射,并且它们的架构变得越来越复杂。然而,由于雨水与物体边缘和背景混合的限制,很难分离雨水和物体/背景,图像的边缘细节在重建过程中无法有效恢复。为了解决这个问题,我们提出了一种新颖的小波近似感知残差网络(WAAR),在该网络中,雨水在每个级别的低频结构和高频细节中都被有效去除,特别是在每个级别的低频子图像中。
2024-09-09 09:30:35 68
原创 TPAMI 2024 | 基于框驱动掩模和填充率偏移的弱监督语义分割
语义分割通过采用深度全卷积网络(FCN)取得了巨大进展。然而,基于FCN的模型的性能严重依赖于像素级注释的数量,这些注释既昂贵又耗时。考虑到边界框也包含丰富的语义和客观信息,一个直观的解决方案是利用边界框中的弱监督来学习分割。如何充分利用边界框中的类级和区域级监督来估计不确定区域是弱监督学习任务的关键挑战。在本文中,我们提出了一个混合模型来解决这个问题。首先,我们引入了一个由边界框驱动的类特定掩码模型(BCM),以去除每个类的不相关区域。
2024-09-09 09:29:42 113
转载 TPAMI 2024 | 何恺明都没有想到!在残差神经网络里面加入扩散机制
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自:AI学术工坊题目:Diffusion Mechanism in Residual Neural Network: Theory and Applications残差神经网络中的扩散机制:理论与应用作者:Tangjun Wang; Zehao Dou; Chenglong Bao; Zuoqiang Shi源码链接:ht...
2024-09-08 10:05:21 916
原创 TPAMI 2024 | SODFormer:利用事件和帧流进行Transformer基础的流式目标检测
DAVIS相机,流式传输两种互补的传感模式:异步事件和帧,已逐渐被用来解决主要的对象检测挑战(例如,快速运动模糊和低光照)。然而,如何有效利用丰富的时间线索并融合两种异构的视觉流仍然是一个具有挑战性的任务。为了解决这一挑战,我们提出了一种新的基于Transformer的流式目标检测器,称为SODFormer,它首先通过整合事件和帧以异步方式连续检测对象。技术上,我们首先构建了一个大规模的多模态神经形态目标检测数据集(即PKU-DAVIS-SOD),超过1080.1k手动标签。
2024-09-08 09:30:00 13
原创 TPAMI 2024 | 对象亲和性学习:迈向无需标注的实例分割
我们解决的是野外环境中无需标注的实例分割问题,旨在减轻手动掩膜标注的昂贵成本。现有方法利用颜色、边缘和纹理等视觉线索来生成实例分割的伪掩膜。然而,由于仅通过视觉外观定义对象存在歧义,这些方法在复杂场景中无法区分对象与背景。除了视觉线索外,对象在空间上是一体的,并且随着时间的推移一起移动,这表明几何线索,如空间连续性和运动一致性,也可用于解决此问题。为了直接利用几何线索,我们提出了一种基于亲和性的范式,称为对象亲和学习。
2024-09-08 09:30:00 15
转载 《黑神话:悟空》里惊艳的古建场景是如何生成的?
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达--文末赠书--自《黑神话:悟空》面世以来,不少小伙伴们被其中的3D场景所惊艳!打造如此逼真、具有视觉冲击力的场景,绝对离不开三维视觉技术的加持~~在人工智能时代,NeRF(Neural Radiance Fields,神经辐射场)与3DGS(3D Gaussian Splatting,3D高斯溅射)技术成为完成三维重建、新视角...
2024-09-07 10:05:42 123
转载 ICML 2024 | 简化Transformer,华为提出无需LayerNorm的Attention,精度无损推理效率大幅提升...
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达©作者 |陈醒濠 转载自:PaperWeeklyTransformer 已经成为了语言和视觉任务中常用的基础架构之一。然而,由于 Transformer 结构高计算开销的影响,其在端侧等资源受限设备中的应用依然面临很大的挑战。我们对 Transformer 结构中的标准化层和注意力机制两个模块的优化策略进行了深入探索,从而构建...
2024-09-07 10:05:42 168
原创 TPAMI 2024 | 具有灵活规模约束的参数不敏感最小割聚类
聚类是机器学习中的一个基本主题,提出了各种方法,其中 K-Means (KM) 和最小割聚类是典型的。然而,它们可能会产生空的或倾斜的聚类结果,这并不符合预期。在 KM 中,约束聚类方法已经得到了充分研究,而在最小割聚类中,这一方面仍然需要发展。在本文中,我们提出了一种具有灵活规模约束的参数不敏感最小割聚类方法。具体来说,我们为每个聚类添加了样本数量的下限,这可以完美地避免最小割聚类中的平凡解。据我们所知,这是首次直接将规模约束引入最小割。然而,这是一个 NP 难问题,难以解决。
2024-09-07 09:30:00 13
原创 TPAMI 2024 | 三维视觉显著性:一个独立的感知度量还是二维图像显著性的衍生物?
在计算机视觉和图形学领域,3D视觉显著性的研究已经取得了长足的进展,其目标是预测3D表面的区域重要性,以与人类视觉感知相一致。然而,最新的眼动追踪实验表明,现有的最先进3D视觉显著性方法在预测人类注视点方面表现不佳。这些实验中显著出现的线索表明,3D视觉显著性可能与2D图像显著性有关。
2024-09-07 09:30:00 116
转载 TPAMI 2024 | 悉尼大学提出四边形注意力的视觉Transformer,胜任各种任务的全新框架来袭!...
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达题目:Vision Transformer With Quadrangle Attention四边形注意力的视觉Transformer作者:Qiming Zhang; Jing Zhang; Yufei Xu; Dacheng Tao摘要基于窗口的注意力由于其优异的性能、较低的计算复杂度和较小的内存占用,已成为视觉Transfo...
2024-09-06 10:05:25 284
原创 TPAMI 2024 | 面向少样本分子属性预测的属性感知关系网络
Property-Aware Relation Networks for Few-Shot Molecular Property Prediction题目:面向少样本分子属性预测的属性感知关系网络作者:Quanming Yao; Zhenqian Shen; Yaqing Wang; Dejing Dou摘要分子属性预测在人工智能辅助药物发现中扮演着基础性角色,其目标是识别候选分子,本质上这也是一个少样本问题,因为标记数据的缺乏。在本文中,我们提出了属性感知关系网络(PAR)来解决这一问题。我们首
2024-09-06 09:30:00 17
原创 TPAMI 2024 | DynGAN: 使用动态聚类解决GAN中的模式崩溃
题目:DynGAN: Solving Mode Collapse in GANs With Dynamic ClusteringDynGAN: 使用动态聚类解决GAN中的模式崩溃作者:Yixin Luo; Zhouwang Yang摘要生成对抗网络 (GAN) 是广泛使用的生成模型,用于合成复杂和真实的数据。然而,模式崩溃,即生成样本的多样性显著低于真实样本的多样性,这对于进一步应用构成了主要挑战。我们的理论分析表明,当真实数据中存在多个模式时,生成器损失函数相对于其参数是非凸的。特别是,生成分布
2024-09-06 09:30:00 90
原创 TPAMI 2024 | 从简单到复杂场景:学习鲁棒特征表示以实现精确人体解析
人体解析因其在计算机视觉领域的广泛应用而引起了相当大的研究兴趣。在本文中,我们探讨了几种有用的属性,包括高分辨率表示、辅助引导和模型鲁棒性,这些属性共同促成了一种新颖的方法,用于在简单和复杂场景中进行精确的人体解析。从简单场景开始:我们提出了边界感知混合分辨率网络(BHRN),这是一种先进的人体解析网络。BHRN利用反卷积层和多尺度监督来生成丰富的高分辨率表示。此外,它还包括一个设计用来增强部件边界精细度的边缘感知分支。在BHRN的基础上,我们构建了一个双任务互学习(DTML)框架。
2024-09-05 09:30:00 23
原创 TPAMI 2024 | 考虑分布特性的单阶段多人姿态回归模型
理解人体姿态是一个具有挑战性的话题,涵盖了多个任务,例如姿态估计、体部网格恢复和姿态跟踪。在本文中,我们提出了一种新颖的分布感知单阶段(DAS)模型,用于与姿态相关的任务。所提出的DAS模型能够同时估计人体位置并定位关节,这只需要单次传递。同时,我们利用归一化流使DAS能够学习关节位置的真实分布,而不是简单地做出高斯或拉普拉斯假设。这提供了一个关键的先验,并大大提升了基于回归的方法的准确性,从而使DAS实现了与基于体积的方法相当的性能。
2024-09-05 09:30:00 90
转载 今年顶会这情况。。。大家提前做准备吧!
前几天,有个粉丝在后台给我留言,他说:不知道大家的论文都写得怎么样了?我现在是恨不得克隆十个自己,一个泡在实验室盯实验结果,一个去写月底要送审的稿子.....可现实是只有一个我,只能天天熬夜。他不是个例,成千上万的科研人都要面对无尽的实验、反复修改的论文。我们都知道写论文最头疼的不是事情多,是那些没有任何操作性可言的「重复劳动」。一整天下来,全在找梯子、找文献、找前沿成果,然后还要打包下载,有的P...
2024-09-04 10:05:38 17
转载 C语言和C++的区别和联系,大多数人都说错了
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达前言你完全理解 C 语言和 C++ 之间的联系与区别吗?看完这篇文章,也许你会有一些新的收获。转载自丨C语言与CPP编程C语言和C++到底是什么关系?首先C++和C语言本来就是两种不同的编程语言,但C++确实是对C语言的扩充和延伸,并且对C语言提供后向兼容的能力。对于有些人说的C++完全就包含了C语言的说法也并没有错。C++一...
2024-09-04 10:05:38 406
转载 ECCV 2024 | 全新SOTA,人大、北邮等联合提出多模态分割新方法
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达©作者 |王耀霆单位 |中国人民大学来源 |量子位 PaperWeekly让 AI 像人类一样借助多模态线索定位感兴趣的物体,有新招了!来自人大高瓴 GeWu-Lab、北邮、上海 AI Lab 等机构的研究人员提出 Ref-AVS(Refer and Segment Objects in Audio-Visual Scen...
2024-09-04 10:05:38 245
原创 TPAMI 2024 | 跨图像像素对比的语义分割方法
本文研究了图像语义分割问题。现有方法主要关注于挖掘“局部”上下文,即通过特别设计上下文聚合模块(例如,扩张卷积、神经注意力)或结构感知优化目标(例如,IoU损失)在单个图像内部像素之间的依赖关系。然而,它们忽略了训练数据的“全局”上下文,即不同图像中像素之间丰富的语义关系。受到无监督对比表示学习最新进展的启发,我们提出了一种像素级对比算法,称为PiCo,用于完全监督学习环境中的语义分割。核心思想是强制同一语义类别的像素嵌入比不同类别的嵌入更相似。
2024-09-04 09:30:00 422
原创 TPAMI 2024 | 无需多源证据的无监督领域自适应
Evidential Multi-Source-Free Unsupervised Domain Adaptation题目:无需多源证据的无监督领域自适应作者:Jiangbo Pei; Aidong Men; Yang Liu; Xiahai Zhuang; Qingchao Chen源码:https://github.com/SPIresearch/EAAF摘要多源自由无监督领域自适应(MSFUDA)需要从多个源模型中聚合知识,并将其适配到目标领域。目前还存在两个挑战:1)多个源模型的次优粗粒
2024-09-04 09:30:00 125
转载 智慧建筑:基于YOLOv7的建筑外墙缺陷检测
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达01前景概要现有的基于深度学习的方法在识别速度和模型复杂性方面面临一些挑战。为了保证建筑外墙缺陷检测的准确性和速度,我们研究了了一种改进的YOLOv7方法BFD-YOLO。首先,将YOLOv7中原有的ELAN模块替换为轻量级的MobileOne模块,以减少参数数量并提高推理速度。其次,在模型中加入了坐标注意力模块,增强了特征提取...
2024-09-03 10:05:47 240
转载 IJCV 2024 | 神来之笔!清北、哈工大联合提出无需GT的自监督图像重建网络学习方法,代码已开源!...
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达一、论文信息论文标题:Self-Supervised Scalable Deep Compressed Sensing(自监督可变采样率的深度压缩感知)论文作者:Bin Chen(陈斌), Xuanyu Zhang(张轩宇), Shuai Liu(刘帅), Yongbing Zhang†(张永兵), and Jian Zhang...
2024-09-03 10:05:47 217
原创 TPAMI 2024 | 深度排序中的对抗性攻击与防御
深度神经网络分类器容易受到对抗性攻击的影响,其中不可感知的扰动可能导致误分类。然而,基于DNN的图像排名系统的脆弱性尚未充分探索。在本文中,我们提出了两种针对深度排名系统的攻击,即候选人攻击和查询攻击,它们可以通过对抗性扰动提高或降低选定候选人的排名。具体来说,预期的排名顺序首先表示为一组不等式。然后设计了一个类似三元组的目标函数,以获得最优扰动。相反,我们提出了一种抗崩溃三元组防御方法,以提高排名模型对所有提出的攻击的鲁棒性,其中模型学习防止对抗性攻击将正样本和负样本拉近。
2024-09-03 09:30:00 23
原创 TPAMI 2024 | 无需源域的领域泛化预训练在面部反欺骗中的应用
无源域自适应(SFDA)展示了提高基于深度学习的人脸反欺骗(FAS)的泛化能力的潜力,同时保护敏感人脸数据的隐私和安全。然而,现有的SFDA方法在没有源数据访问权限的情况下,由于无法减轻FAS中的域和身份偏差而显著降级。在本文中,我们提出了一种新颖的无源域自适应框架用于FAS(SDA-FAS),系统地解决了无源设置下的源模型预训练、源知识适应和目标数据探索的挑战。具体来说,我们开发了一种泛化方法用于源模型预训练,利用因果启发的PatchMix数据增强来减少域偏差,并设计了逐片对比损失来缓解身份偏差。
2024-09-03 09:30:00 31
原创 TPAMI 2024 | 重新审视现实的测试时间训练:通过锚定聚类正则化自训练进行顺序推理和适应
在目标领域数据因分布偏移而需要适应时,部署模型是必要的。测试时间训练(TTT)在一个现实的场景中出现,解决了这一适应问题,此时无法获得完整的源领域数据,但需要对目标领域进行即时推理。尽管对 TTT 进行了许多努力,但实验设置存在混乱,从而导致了不公平的比较。在这项工作中,我们首先重新审视 TTT 的假设,并通过两个关键因素对 TTT 协议进行分类,即测试数据是否按顺序流式传输,以及源模型是否允许使用修改后的损失函数进行训练。
2024-09-02 20:21:25 213
转载 一边是计算机就业哀鸿遍野,一边是高考生疯狂涌向计算机专业,太魔幻了!...
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达转自:Hollis,编辑:Jack Cui在张雪峰推荐的几大专业里,计算机专业是其中之一。近几年,计算机专业报考热度不减,但就业前景却令人堪忧,互联网裁员接二连三,许多码农找不到工作。一位网友感叹:一边是计算机就业哀鸿遍野,一边是高考生疯狂涌向计算机专业,太魔幻了!有人说,大部分家长没有信息渠道,滞后几年很正常,都是追涨杀跌的韭...
2024-09-02 10:05:28 62
转载 真心建议大家冲冲这个新兴领域,应届生年薪都炒到了61.8w+!
国内AI赛道又又又爆了!继科大讯飞、阿里、华为等巨头公司发布AI产品后,各行各业的中小企业也陆续进场!尤其是科研圈圈内“AI+科研”人才“一将难求”!甚至开出80k*16的高薪,挖掘AI大模型人才!如今各大老板们,也更倾向于会AI的人,科研人,如何抓住风口机会?吃到红利?与其焦虑……不如成为「掌握AI工具的科研人」,毕竟AI时代,谁先尝试,谁就能占得先机!????知乎知学堂特邀你加入:行业前沿资源——...
2024-09-02 10:05:28 34
原创 TPAMI 2024 | 具有放松保守性的高效离线强化学习
Efficient Offline Reinforcement Learning With Relaxed Conservatism题目:具有放松保守性的高效离线强化学习作者:Longyang Huang; Botao Dong; Weidong Zhang摘要离线强化学习(RL)旨在从不与环境交互的静态离线数据集中学习最优策略。然而,现有离线RL方法的理论理解需要进一步研究,其中学习到的Q函数和策略的保守性是一个主要问题。在本文中,我们提出了一个简单高效的放松保守性(ORL-RC)框架,通过学习
2024-09-02 09:30:00 81
原创 TPAMI 2024 | 解码深度神经网络特征表示以实现高性能人工智能
人工智能(AI)由深度学习驱动,正在改变科学技术的许多方面。深度学习的巨大成功源于其独特的能力,即从大数据中提取决策所需的基本特征。然而,深度神经网络(DNNs)中的特征提取和隐藏表示仍然难以解释,主要是因为缺乏技术工具来理解和审问特征空间数据。这里的主要障碍是特征数据本质上往往是嘈杂的,结构复杂,规模和维度巨大,使得现有技术难以可靠地分析数据。在这项工作中,我们开发了一个名为对比特征分析(CFA)的计算框架,以促进探索DNN特征空间并提高AI的性能。
2024-09-02 09:30:00 48
转载 TPAMI 2024 | 上交团队提出Dropout的隐式正则化,轻松提高网络模型泛化性
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达Implicit Regularization of Dropout题目:Dropout的隐式正则化作者:Zhongwang Zhang and Zhi-Qin John Xu源码:https://github.com/sjtuzzw/torch_code_frame摘要在神经网络训练过程中,了解如何通过使用流行的正则化方法——...
2024-09-01 10:06:17 388
原创 TPAMI 2024 | DPCN++:多用途位姿配准的可微分相位相关网络
DPCN-- Differentiable Phase Correlation Network for Versatile Pose RegistrationDPCN++:多用途位姿配准的可微分相位相关网络Zexi Chen , Yiyi Liao , Haozhe Du , Haodong Zhang , Xuecheng Xu , Haojian Lu ,Rong Xiong , and Yue Wang摘要姿态配准在视觉和机器人学中至关重要。本文聚焦于无需初始化的7自由度姿态配准这一具有挑战
2024-09-01 09:30:00 25
原创 TPAMI 2024 | DreamStone图像:作为文本引导的三维形状生成的垫脚石
本文提出了一种新的文本引导的3D形状生成方法DreamStone,该方法使用图像作为连接文本和形状模态的垫脚石,无需成对的文本和3D数据即可生成3D形状。我们方法的核心是两阶段的特征空间对齐策略,利用预训练的单视图重建(SVR)模型将CLIP特征映射到形状:首先,将CLIP图像特征映射到SVR模型的细节丰富的3D形状空间,然后将CLIP文本特征通过鼓励渲染图像与输入文本之间的CLIP一致性映射到3D形状空间。
2024-09-01 09:30:00 76
转载 实践教程|GPU 利用率低常见原因分析及优化
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达仅用于学术分享,若侵权请联系删除一、GPU 利用率的定义本文的 GPU 利用率主要指 GPU 在时间片上的利用率,即通过 nvidia-smi 显示的 GPU-util 这个指标。统计方式为:在采样周期内,GPU 上面有 kernel 执行的时间百分比。二、GPU 利用率低的本质常见 GPU 任务运行流程图如下:如上图所示,GP...
2024-08-31 10:58:18 468
转载 TPAMI 2024 | 意外发现!南理工团队发现标签注入少量真实信息,却能带来巨大的回报...
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达A Little Truth Injection But a Big Reward: Label Aggregation With Graph Neural Networks题目:少量真实信息的注入,却能带来巨大的回报:使用图神经网络进行标签聚合作者:Zijian Ying; Jing Zhang; Qianmu Li; Min...
2024-08-31 10:58:18 457
原创 TPAMI 2024|用于持续学习的基于广义差异的分布稳健记忆演化
Distributionally Robust Memory Evolution With Generalized Divergence for Continual Learning用于持续学习的基于广义差异的分布稳健记忆演化Zhenyi Wang o, Li Shen , Tiehang Duan , Qiuling Suo o, Le Fang , Wei Liu ,Mingchen Gao摘要持续学习(Continual Learning, CL)的目标是在非静态数据分布上学习,同时不忘记先
2024-08-31 09:30:00 4024
Python视觉实战项目31讲.pdf
2020-10-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人