自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5904)
  • 资源 (2)
  • 收藏
  • 关注

原创 【荐读IEEE TPAMI】基于模型的强化学习与独立想象力

在基于视觉的交互系统中,世界模型学习行动的后果。然而,在实际场景中,如自动驾驶,存在不可控制的动态,这些动态独立于或与行动信号稀疏相关,这使得学习有效的世界模型变得具有挑战性。为了解决这个问题,我们提出了Iso-Dream++,这是一种基于模型的强化学习方法,具有两个主要贡献。首先,我们优化了逆动力学,鼓励世界模型从环境混合的时空变化中隔离出可控制的状态转换。其次,我们基于解耦的潜在想象进行策略优化,我们将不可控制的状态滚动到未来,并将其与当前可控制的状态自适应地关联起来。

2024-05-18 19:15:00 1231

原创 【荐读IEEE TPAMI】无监督去雨:非对称对比学习与自相似性相遇

大多数现有的基于学习的去雨方法都是在合成的雨-清洁对上进行有监督训练的。合成雨与真实雨之间的领域差距使它们在复杂的真实雨场景中的泛化能力降低。此外,现有方法主要独立利用图像或雨层的属性,很少有方法考虑它们之间的相互排斥关系。为了解决这一困境,我们探索了每层内部的内在自相似性以及两层之间的相互排斥性,并提出了一种无监督的非局部对比学习(NLCL)去雨方法。非局部自相似性图像块作为正样本被紧密地拉在一起,而雨块作为负样本则被显著地推开,反之亦然。

2024-05-13 12:24:06 1030

原创 TIP 2024 | 跨类与跨域语义增强用于域泛化

域泛化方法旨在通过多样化的源域帮助开发一个在未知目标域上表现良好的通用模型。数据增强已被证明是增强计算机视觉中域泛化的有效方法。最近,基于语义级别的数据增强取得了显著成果。然而,这些方法主要集中在从类内和域内采样语义方向,限制了源域的多样性。为了解决这个问题,作者提出了一种新的方法,称为跨类与跨域语义增强(CDSA)。首先,作者引入了一种基于采样的方法CrossSmooth,从跨类中获取语义方向。然后,CrossVariance通过采样语义方向获取不同域的样式。

2025-05-14 09:30:00 5

原创 TIM 2025 | CFFDist:用于工业异常定位的跨尺度特征融合蒸馏网络

无监督异常定位在检测工业产品表面缺陷中起着至关重要的作用,而知识蒸馏网络因其在异常定位中的有效性而脱颖而出。为了进一步增强知识蒸馏网络对异常的敏感性并减轻过拟合的风险,同时解决学生解码器网络在准确重建细粒度特征方面的挑战,作者提出了一种创新的跨尺度特征融合蒸馏网络(CFFDist)。CFFDist网络通过利用独特的特征融合蒸馏方法并结合两个关键模块,即跨尺度特征融合窗口(CFFW)和异常模拟模块(ASM),实现了卓越的性能。

2025-05-14 09:30:00 4

原创 TPAMI 2025 | 用于人物图像生成的增强多尺度交叉注意力机制

本文中,作者提出了一种基于交叉注意力机制的新型生成对抗网络(GAN),用于极具挑战性的人物图像生成任务。交叉注意力机制是一种新颖直观的多模态融合方法,它通过计算不同模态的两个特征图之间的注意力/相关矩阵来实现。具体而言,作者提出了新型的XingGAN(或CrossingGAN),该网络由两个生成分支组成,分别捕捉人物的外观和形状特征。此外,作者还提出了两种新型交叉注意力模块,有效传递和更新人物的形状和外观嵌入,以实现相互促进,这是现有基于GAN的图像生成工作未曾考虑的。为了进一步学习不同尺度和子区域中不同人

2025-05-14 09:30:00 4

原创 医图论文 ICCV 2023 | DCAug:用于肿瘤增强的域感知和内容一致的跨周期框架

公式化:给定两幅图像及其对应的肿瘤标签XAYAXA​YA​XBYBXB​YB​XAbXB⋅YBXA⋅1−YBYAbYBYA⋅1−YBXAb​XB​⋅YB​XA​⋅1−YB​YAb​YB​YA​⋅1−YB​XBaXA⋅YAXB⋅1−YAYBaYAYB⋅1−YAXBa​XA​⋅。

2025-05-14 09:30:00 3

原创 医图论文 MIA 2025 | 基于知识驱动的多图卷积网络用于脑网络分析和潜在生物标志物发现

在脑网络分析中,个体层面的数据能够提供个体的生物学特征,而群体层面的数据则可以提供群体的人口统计学信息。然而,现有的方法大多分别利用个体或群体层面的特征,不可避免地忽略了脑部疾病的多层次特征。为了解决这个问题,作者提出了一个名为 KMGCN 的端到端多图神经网络模型。该模型同时利用个体和群体层面的特征进行脑网络分析。在个体层面,作者使用知识驱动和数据驱动的方法构建多图。知识驱动是指基于先验知识构建知识图谱,而数据驱动则是从数据本身学习数据图。在群体层面,作者使用成像和表型数据构建多图。此外,作者还设计了一种

2025-05-14 09:30:00

转载 2025时间序列都有哪些创新点可做——总结篇

该方法通过迁移学习技术,将不同特征空间的知识迁移到目标领域,并利用时间序列处理方法提取稀疏数据中的时间信息,从而在保护隐私和数据安全的前提下,提高预测的准确性。论文提出了一种新的傅里叶分析方法,通过改进时间序列的处理方式,突破了传统方法的时间频率分辨率限制,不仅能够处理少于一个周期的时间序列,还能有效分离信号和噪声,实现了高分辨率的信号分析。论文提出了一种基于KAN网络的新型时间序列因果推断模型KANGCI,通过稀疏惩罚和正则化从时间序列中高效推断格兰杰因果关系,并利用时间反转技术优化结果。

2025-05-13 12:01:33 7

转载 知乎热议 | 清华姚班开设马上 20 年了,为什么没出巨擘?

观点不代表本公众号立场,如有侵权,请联系删除。”,选择加"星标"或“置顶”重磅干货,第一时间送达。

2025-05-13 12:01:33 2

原创 TIP 2024 | 基于拉普拉斯梯度一致性先验的闪光引导非闪光图像去噪

闪光引导的非闪光图像去噪的主要挑战在于探索两种模态之间的一致性先验。现有的方法大多尝试在像素级别上建模闪光/非闪光一致性,这容易导致边缘模糊。与这些方法不同,作者在本文中发现了一个重要的现象:闪光和非闪光图像之间的模态差异在梯度域中符合拉普拉斯分布。基于这一发现,作者建立了一个拉普拉斯梯度一致性(LGC)模型,用于闪光引导的非闪光图像去噪。该模型在收敛速度和去噪精度上均优于传统的像素一致性模型。通过求解LGC模型,作者进一步设计了一个名为LGCNet的深度网络。

2025-05-13 09:30:00 12

原创 AAAI 2025 |用于可信图对比学习的 GNN-Transformer 协同架构

图对比学习(Graph Contrastive Learning, GCL)已成为图表示学习领域的热门话题。与依赖大量标签的传统监督学习不同,GCL利用增强策略生成多个视图以及正/负样本对,这两者都极大地影响着模型性能。遗憾的是,常用的随机增强可能会干扰图的潜在语义。此外,传统的图神经网络(Graph Neural Networks, GNNs)作为GCL中广泛使用的一类编码器,不可避免地面临过平滑和过压缩问题。

2025-05-13 09:30:00 374

原创 TPAMI 2025 | 基于感知流形曲率预测和提升深度神经网络的公平性

摘要:为应对长尾分类的挑战,研究人员提出了多种减少模型偏差的方法,其中大多数方法假设样本较少的类别是弱类别。然而,最近的研究表明,尾部类别并不总是难以学习,并且在样本平衡的数据集上也观察到了模型偏差,这表明存在其他影响模型偏差的因素。在这项工作中,作者首先建立了一个分析模型公平性的几何视角,然后系统地提出了一系列用于度量深度神经网络中感知流形的几何度量方法。随后,作者全面探索了感知流形的几何特征对分类难度的影响,以及学习过程如何塑造感知流形的几何特征。一个意外的发现是,在训练过程中,类别准确率与感知流形的分

2025-05-13 09:30:00 12

原创 医图论文 MIA 2025 | IGUANe:用于多中心脑磁共振图像协调的3D可泛化CycleGAN

在磁共振成像(MRI)研究中,整合来自多个采集站点的成像数据可以增加样本量,但可能会引入与站点相关的变异性,从而影响后续分析的一致性。用于图像转换的深度学习方法已成为跨站点协调磁共振图像的一种解决方案。在本研究中,作者提出了IGUANe(基于统一对抗网络的图像生成),这是一个原创的3D模型,它利用域转换和风格迁移方法的优势,实现多中心脑磁共振图像的协调。IGUANe通过多对一架构扩展了CycleGAN,能够整合任意数量的域进行训练。

2025-05-13 09:30:00 8

原创 医图论文MICCAI 2023 | 通过单张二维投影和深度监督实现增强CT图像中3D动脉分割

三维容积中血管的自动分割是许多血管疾病定量诊断和治疗的重要步骤。现有工作对三维血管分割进行了积极研究,主要采用深度学习方法。然而,训练三维深度网络需要专家提供大量手动三维标注,获取这些标注十分费力。对于三维血管分割而言,情况尤为如此,因为血管在二维切片中分布稀疏且分散在多个切片上,可视化时还可能不连续。在这项工作中,作者提出了一种仅通过每个训练图像的一个标注二维投影和深度监督来分割三维胰腺周围动脉的新方法。

2025-05-13 09:30:00 10

转载 快手二面拷打:训练100B模型要多少显存?

该手段相对来说是使用频率最高,且一般不会影响运算的精度,可以用 2 节中的计算公式为参考去设计新的 TP/PP/DP/Zero/重计算的相关参数来降低显存消耗。根据数值的变化,可将显存消耗分为静态/动态值。混合精度的单层的数据配置一般如下图所示,需要注意的是 master weights 只要算一次,要么在优化器中计算要么在模型中计算,这里默认在优化器中考虑。本文围绕大模型的训练/推理场景,介绍 Transformer 类模型的显存计算公式,帮助读者能更好的了解全局显存的组成以及如何优化显存。

2025-05-12 10:02:49 29

原创 ICIP 2024 | 使用参考引导的Transformer提升图像去雨效果

图像去雨是计算机视觉中的一个关键任务,旨在提高能见度并增强户外视觉系统的鲁棒性。尽管近年来去雨方法取得了显著的进展,但如何生成高质量且视觉上令人满意的去雨结果仍然是一个挑战。在本文中,作者提出了一种参考引导的去雨滤波器,这是一种利用参考干净图像作为指导来增强去雨效果的Transformer网络。作者利用所提出的模块进一步优化现有方法的去雨结果。作者在三个数据集上验证了该方法,并展示了该模块能够提升现有基于先验、基于CNN和基于Transformer的方法的性能。

2025-05-12 09:30:00 178

原创 TMI 2024 | 多尺度特征对齐用于无标签域的持续学习

无监督域适应(UDA)方法有助于在没有标签数据的情况下提高深度神经网络在未见域上的性能。特别是在病理学等医学领域,这一点至关重要,因为具有详细注释的大规模数据集非常稀缺。虽然大多数现有的UDA方法专注于从有标签的源域适应到单个无标签的目标域,但许多具有长生命周期的现实应用涉及多个目标域。因此,能够顺序适应多个目标域变得至关重要。在无法存储之前见过的域数据的情况下,例如由于数据保护法规,上述问题成为一个具有挑战性的持续学习问题。为此,我们提出使用生成特征驱动的图像回放,结合一个双用途的判别器,该判别器不仅能够

2025-05-12 09:30:00 11

原创 TPAMI 2025 | 通过事件勾勒生成过程学习异质网络节点表示及其在链接预测中的应用

异质信息网络(HIN)作为描述现实世界系统中交互关系的重要工具脱颖而出。近年来,HIN上的表示学习备受关注,因为结构化且紧凑的输出嵌入为网络分析和图机器学习任务提供了极大便利。现有HIN表示学习方法在监督训练或直接邻近度重建方面表现出色,在节点聚类和分类等任务中取得了令人满意的性能,但它们往往忽略了HIN生成过程中由众多事件所表征的关键特征。因此,这些方法无法保留节点之间的高阶交互,也难以预测HIN中的潜在链接。为解决这些局限,作者提出了一种基于异质信息网络事件的对比学习方法(CLEH)。

2025-05-12 09:30:00 155

原创 医图论文 MIA 2025 | 一种用于组织病理学的稳健图像分割与合成管道

尽管与传统方法相比,数字切片图像能够更精确地测量和量化特征,但病理诊断中观察者之间和观察者内部仍存在显著的诊断差异。对癌细胞和组织区域进行自动、准确的分割可以简化诊断过程,深入了解癌症的进展,并帮助专家确定最有效的治疗方案。作者评估了所提出的PathoSeg模型的性能,该模型的架构包括一个改进的HRNet编码器和一个UNet++解码器,并集成了一个CBAM模块,以利用注意力机制来提高分割能力。作者证明了PathoSeg在实例分割和语义分割的定量和定性评估中都优于当前的先进(SOTA)网络。

2025-05-12 09:30:00 196

原创 医图论文MICCAI 2023 | 一个可解释的深度框架:用于多对一MRI合成的特定任务融合

多序列磁共振成像(MRI)在临床环境中对可靠的诊断和治疗预后具有重要价值,但由于各种原因,某些序列可能无法使用或缺失。为解决这一问题,MRI 合成是一种潜在的解决方案。最近基于深度学习的方法在结合多个可用序列进行缺失序列合成方面取得了良好的性能。尽管取得了成功,但这些方法缺乏量化不同输入序列贡献以及估计生成图像中特定区域质量的能力,这使得它们难以实际应用。

2025-05-12 09:30:00 13

原创 TPAMI 2025 | 用于场景图生成去偏的因果调整模块

虽然最近用于场景图生成(SGG)的去偏方法表现出色,但这些方法往往将模型偏差仅归因于关系的长尾分布,忽略了由不均衡的对象和对象对分布所导致的更深刻原因。在本文中,作者运用因果推断技术对这些观察到的不均衡分布之间的因果关系进行建模。作者的观点在于,因果推断能够捕捉复杂分布之间不可观测的因果效应,这对于追溯模型偏差的根源至关重要。具体而言,作者引入了基于中介变量的因果链模型(MCCM),该模型除了对对象、对象对和关系之间的因果关系进行建模外,还纳入了中介变量,即共现分布,以完善因果关系。随后,作者提出了因果调整

2025-05-11 19:15:35 13

转载 CVPR 2025 | 突破注意力机制!vHeat:基于热传导的视觉表征模型

在 COCO 数据集上, vHeat 也拥有性能优势:在 fine-tune 12 epochs 的情况下,vHeat-T/S/B 分别达到 45.1/46.8/47.7 mAP,超过了 Swin-T/S/B 达 2.4/2.0/0.8 mAP,超过 ConvNeXt-T/S/B 达 0.9/1.4/0.7 mAP。可以明显看出,由于 O (N^1.5) 的计算复杂度,vHeat 相比于对比的模型有更快的推理速度、更低的显存占用以及更少的 FLOPs,并且在图像分辨率越大时,优势会更为明显。

2025-05-11 19:13:54 25

原创 AAAI 2025 | GHOST:高斯假设开放集技术

大规模识别方法的评估通常聚焦于整体性能。虽然这种方法很常见,但它往往无法深入了解各个类别的性能表现,这可能会导致公平性问题和评估偏差。解决这些差距对于准确评估方法在处理新的或未见类别时的表现,以及确保评估的公平性至关重要。为了解决开放集识别(OSR)中的公平性问题,作者证明了不同类别的性能可能存在显著差异。作者提出了高斯假设开放集技术(GHOST),这是一种全新的无超参数算法,它使用具有对角协方差矩阵的类条件多元高斯分布对深度特征进行建模。

2025-05-11 19:02:22 21

原创 TIM 2025 | 基于原型驱动和多专家集成的多模态MR脑肿瘤图像分割

针对多模态磁共振(MR)脑肿瘤分割,现有方法通常直接从输入图像中提取判别性特征以区分肿瘤子区域类别。然而,肿瘤子区域之间的相互包含导致的信息混叠问题往往被忽视。此外,现有方法通常没有针对性地突出单个肿瘤子区域的特征。为此,作者提出了一种基于肿瘤原型驱动和多专家集成的多模态MR脑肿瘤分割方法。该方法能够在肿瘤原型的指导下突出每个肿瘤子区域的特征。具体来说,为了获得具有完整信息的原型,作者提出了一种互传机制,将不同模态的特征相互传递。此外,作者设计了一种原型驱动的特征表示与融合(PFRF)方法,将学习到的原型植

2025-05-11 09:30:00 25

原创 TCSVT 2025 | 用于遥感图像稀疏监督语义分割的负类引导空间一致性网络

深度神经网络(DNNs)已成功应用于遥感语义分割领域。然而,训练深度神经网络需要大量密集标注的样本,这一过程既费力又耗时。稀疏监督语义分割(SSSS)能够仅利用稀疏标注来训练深度分割网络。在本文中,作者提出了一种用于稀疏标注语义分割的负类引导空间一致性网络(NCG-SCNet)。具体而言,作者引入了空间一致性增强模块(SCEM),通过对空间相似特征进行非线性组合来增强网络特征,从而更好地表示目标的边界和形状。此外,作者还提出了通道压缩模块(CCM),在保留网络特征提取能力的同时减少通道冗余。

2025-05-11 09:30:00 25

原创 医图论文MICCAI 2023 | 用于人工智能辅助交互式分割的自适应多尺度在线似然网络

现有的交互式分割方法利用自动分割和用户交互来细化标签,与手动标注相比,显著减少了标注工作量。然而,这些方法缺乏对模糊和噪声数据的快速适应性,这在包含新冠肺炎患者肺部病变的 CT 体积数据中是一个挑战。在这项工作中,作者提出了一种自适应多尺度在线似然网络(MONet),该网络在数据高效的在线环境中,从初始自动分割和用户提供的修正交互中进行自适应学习。作者通过提出一种自适应损失来实现自适应学习,该损失将用户提供的交互影响扩展到具有相似特征的相邻区域。

2025-05-11 09:30:00 13

转载 用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频

在Cherry Studio MCP服务器里配置文生图MCP-server,魔搭上目前有几个支持生图的MCP,比如ModelScope-Image-Generation-MCP和MiniMax-MCP,两者都在魔搭的云端资源上部署,可以支持SSE的方式调用。魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。而就在今天,自动发布小红书MCP又更新了一个版本,最新的版本不仅支持图片内容发布,还支持了视频内容的发布!

2025-05-10 10:24:46 25

转载 太全了!视觉领域所有的图像特征及其提取方法!

但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。基于线性投影分析的特征抽取方法,其基本思想是根据一定的性能目标来寻找一线性变换,把原始信号数据压缩到一个低维子空间,使数据在子空间中的分布更加紧凑,为数据的更好描述提供手段,同时计算的复杂度得到大大降低。角是图像中点似的特征,在局部它有两维结构。

2025-05-10 10:24:46 36

原创 TIM 2025 | 多层信息融合与优化网络结合注意力机制在息肉分割中的应用

结直肠癌(CRC)是一种复杂的疾病,但通过结肠镜检查可以发现息肉,从而有效预防。在临床实践中,开发用于结肠镜图像的自动息肉分割技术可以显著提高息肉检测的效率和准确性,并帮助临床医生精确定位息肉。然而,现有的分割方法存在几个明显的局限性:1)特征编码器提取的多层次特征利用不足;2)高低层特征聚合效果不佳;3)息肉边界划分不清晰。

2025-05-10 09:30:00 22

原创 TIV 2024 | MDFD2-DETR:一种基于多域特征分解与去冗余的实时复杂道路目标检测模型

准确感知道路目标信息在自动驾驶系统和交通流分析中至关重要。由于复杂道路背景的多变性、目标大小和形状的多样性以及目标之间的相互遮挡,这项任务颇具挑战性。为应对这些挑战,作者引入了一种端到端的实时复杂道路目标检测模型,名为多域特征分解与去冗余检测Transformer(MDFD2-DETR)。据作者所知,这是首个基于DETR架构、专为复杂交通场景设计的实时感知模型。具体而言,作者分析了复杂道路目标感知精度低的关键原因,并提出了多域特征分解(MDFD)模块,以减少空间、通道和频域的特征冗余。

2025-05-10 09:30:00 30

原创 TPAMI 2025 | 具有投影共识约束的分布式核主成分分析框架(一)

本文研究了分布式环境下的核主成分分析(Kernel PCA,KPCA),在这种环境中,数据在本地节点以完整特征分布式观测,且不允许有融合中心。与线性主成分分析相比,核函数的使用给分布式共识优化的设计带来了挑战:局部投影方向依赖于数据。因此,分布式线性主成分分析中的共识约束不再有效。为克服这一问题,作者提出了投影共识约束,并获得了一种有效的分布式共识框架,其中局部解被期望为全局解在局部数据集列空间上的投影。作者还推导了一种基于交替方向乘子法的完全非参数、快速且收敛的算法,该算法每次迭代都是解析的,并且通信效率

2025-05-10 09:30:00 28

原创 TPAMI 2025 | 用于平衡行人属性识别的异构特征重采样

在行人属性识别(PAR)中,“属性”这一宽泛术语涵盖从人体软生物特征到穿着配饰,甚至各种主观身体描述。因此,“属性”的广泛涵盖意味着,PAR不应过度专注于具有独特特征的有限属性,而应从更基础的角度入手。鉴于大多数属性在现实世界数据集中的代表性严重不足,作者将PAR简化为一个在显著数据不平衡下的多标签识别视觉任务。为此,作者引入特征重采样分离学习(FRDL),以将标签平衡学习与属性共现的难题解耦。具体而言,FRDL能够平衡某个属性的采样分布,而不会对其他共现属性的标签先验产生偏差。作为一种补充方法,作者还提出

2025-05-10 09:30:00 19

原创 CVPR 2025 | 计算机视觉基础模型学习到人类视觉系统的低级特征了吗?

计算机视觉基础模型,如DINO或OpenCLIP,是在大规模图像数据集上通过自监督方式训练的。类似地,大量证据表明,人类视觉系统(HVS)受到自然界中颜色和图案的统计分布的影响,而这些特征也存在于基础模型的训练数据中。本文中作者要解决的问题是,在自然图像上训练的基础模型是否模仿了人类视觉系统的一些低级特征,比如对比度检测、对比度掩蔽和对比度恒常性。具体来说,作者设计了包含九种测试类型的实验方案,来评估45种基础模型和生成模型的图像编码器。

2025-05-10 09:30:00 24

原创 医图论文MICCAI 2023 | 用于千兆像素组织病理学图像表示学习的局部-全局图基蒸馏模型及其在癌症风险评估中的应用

机器学习模型在组织病理学图像分析用于疾病诊断方面的应用已得到广泛研究。然而,在患者风险分层方面的努力相对较少。目前大多数技术利用小视野(即所谓的局部特征)将组织病理学图像与患者预后联系起来,在这项工作中,作者研究了在基于图的神经网络中结合全局(即上下文)和局部特征来进行患者风险分层。所提出的网络不仅结合了精细和粗略的组织学模式,还利用它们之间的相互作用来改善风险分层。作者将所提出模型的性能与组织病理学风险分层领域的最先进(SOTA)技术在两个癌症数据集上进行了比较。

2025-05-10 09:30:00 21

原创 MIA 2025 | 基于拉普拉斯特征映射的深度图嵌入用于磁共振指纹重建

磁共振指纹成像(MRF)是一种很有前景的技术,可用于对多种组织参数进行快速定量成像。然而,MRF中使用的高度欠采样方案通常会在重建图像中导致明显的混叠伪影。现有的基于模型的方法可以减轻混叠伪影并提高重建质量,但重建时间较长。此外,这些方法中使用的数据先验,如低秩和总变差,使得在MRF数据中融入非局部和非线性冗余具有挑战性。再者,现有的基于深度学习的MRF方法往往缺乏可解释性,并且难以应对MRF数据高维度所带来的高计算开销。

2025-05-09 16:20:10 31

原创 TIV 2024 | UOLO:一种用于铁路场景理解的多任务 U-Net 与 YOLO 混合模型

提取铁路轨道的拓扑结构、道岔位置及其当前状态等关键信息,有助于减少人为失误,提升铁路运输的安全性和效率。尽管自动驾驶领域发展迅速,但铁路领域的计算机视觉技术应用仍有待拓展。为推动铁路场景理解技术的发展,作者提出了一种全新的多任务架构——UOLO,它将广泛应用的YoloV5目标检测器与成熟的U - Net语义分割模型相结合,并通过传统计算机视觉方法计算出的额外几何特征进一步优化网络。该方法在满足实际应用实时性要求的同时,能够取得领先的成果。

2025-05-09 16:18:54 29

原创 医图论文 MIA 2025 | 基于深度特征的多尺度区域选择网络用于全视野乳腺钼靶图像分类

乳腺癌的早期诊断和治疗可有效降低死亡率。由于乳腺钼靶检查是乳腺癌早期诊断最常用的方法之一,因此钼靶图像的分类是计算机辅助诊断(CAD)系统的一项重要工作。随着深度学习在CAD领域的发展,深度卷积神经网络已被证明能够高质量地完成乳腺癌肿瘤斑块的分类任务,这使得以往大多数基于CNN的全场乳腺钼靶图像分类方法都依赖于感兴趣区域(ROI)或分割标注,以便模型能够定位并聚焦于小的肿瘤区域。然而,对ROI的依赖极大地限制了CAD的发展,因为获取大量可靠的ROI标注既昂贵又困难。

2025-05-09 16:06:30 25

原创 医图论文MICCAI 2023 | 用于磁共振成像脑肿瘤弱监督分割的注意力多出口类激活映射(AME-CAM)

磁共振成像(MRI)常用于脑肿瘤分割,这对患者评估和治疗规划至关重要。为减少标注所需的人力和专业知识,人们提出了基于类激活映射(CAM)的弱监督语义分割(WSSS)方法。然而,现有的CAM方法由于步幅卷积和池化层导致分辨率较低,从而导致预测不准确。在这项研究中,作者提出了一种新颖的CAM方法——注意力多出口类激活映射(AME - CAM),该方法从多个分辨率提取激活映射,以进行分层聚合并提高预测准确性。作者在BraTS 2021数据集上评估了该方法,结果表明它优于现有技术水平的方法。

2025-05-09 16:05:20 19

转载 月薪已炒到6W?强烈建议大家冲一冲这个新兴领域

是衡量大语言模型“从量变到质变”的关键,是针对特定场景的AI解决方案。是指运行一段具有特定功能的代码块的行为,以增强其处理能力,实现更复杂的任务,使大模型能够集成外部工具和资源,提升交互性和实用性。AI大模型技术实战—— Transformer 架构的 核心原理、应用 Fine-tuning 技术,精准微调AI大模型,制造、医疗、金融等各行业都在加速AI应用落地,未来企业更看重能用AI大模型技术重构业务流的技术人。老师们将大模型技术原理讲透的同时,还将丰富的商业化AI应用项目无偿分享,帮大家快速打通。

2025-05-09 10:20:12 18

原创 TPAMI 2025 | 自动驾驶中鸟瞰视图感知稳健性的基准测试与提升

最近,鸟瞰视图(BEV)表示在车载3D感知方面展现出巨大的潜力。然而,尽管这些方法在标准基准测试中取得了令人瞩目的成果,但它们在各种条件下的稳健性仍未得到充分评估。在本研究中,作者提出了RoboBEV,这是一个广泛的基准测试套件,旨在评估BEV算法的弹性。该套件包含多种不同类型的相机损坏情况,每种情况都在三个严重程度级别上进行了研究。作者的基准测试还考虑了在使用多模态模型时发生的完全传感器故障的影响。

2025-05-09 09:30:00 25

Python视觉实战项目31讲.pdf

本手册中主要涉及以下几部分,首先是对 OpenCV中自带的基本函数进行介绍。其次是OpenCV的实战项目,一方面是基于实际项目利用OpenCV实现特定对象的检测,例如车道线检测、路面的坑洼检测、等;另一方面是基于OpenCV实现图像增强,例如利用OpenCV消除运动所引起的图像模糊等。最后是OpenCV与深度学习等其他相结合实现图像分割、人脸检测、运动检测等难度较大的问题。

2020-10-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除