关闭
当前搜索:

faster rcnn学习之rpn训练全过程

上篇我们讲解了rpn与fast rcnn的数据准备阶段,接下来我们讲解rpn的整个训练过程。最后 讲解rpn训练完毕后rpn的生成。 我们顺着stage1_rpn_train.pt的内容讲解。 name: "VGG_CNN_M_1024" layer { name: 'input-data' type: 'Python' top: 'data' top: 'im_info'...
阅读(321) 评论(0)

faster rcnn学习之rpn、fast rcnn数据准备说明

在上文《 faster-rcnn系列学习之准备数据》,我们已经介绍了imdb与roidb的一些情况,下面我们准备再继续说一下rpn阶段和fast rcnn阶段的数据准备整个处理流程。 由于这两个阶段的数据准备有些重合,所以放在一起说明。 我们并行地从train_rpn与train_fast_rcnn说起,这两个函数在train_faster_rcnn_alt_opt.py中。 def tra...
阅读(190) 评论(0)

Faster RCNN minibatch.py解读

minibatch.py 的功能是: Compute minibatch blobs for training a Fast R-CNN network. 与roidb不同的是, minibatch中存储的并不是完整的整张图像图像,而是从图像经过转换后得到的四维blob以及从图像中截取的proposals,以及与之对应的labels等在整个faster rcnn训练中,有两处用到了minibatch...
阅读(214) 评论(0)

py-faster-rcnn代码roidb.py的解读

roidb是比较复杂的数据结构,存放了数据集的roi信息。原始的roidb来自数据集,在trian.py的get_training_roidb(imdb)函数进行了水平翻转扩充数量,然后prepare_roidb(imdb)【定义在roidb.py】为roidb添加了一些说明性的属性。 在这里暂时记录下roidb的结构信息,后面继续看的时候可能会有些修正: roidb是由字典组成的li...
阅读(133) 评论(0)

faster-rcnn系列学习之准备数据

如下列举了 将数据集做成VOC2007格式用于Faster-RCNN训练的相关链接。 RCNN系列实验的PASCAL VOC数据集格式设置 制作VOC2007数据集用于Faster-RCNN训练 将数据集做成VOC2007格式用于Faster-RCNN训练 这一篇比较详细地介绍了如何制造voc2007的所有文件,内含相关软件和代码,值得一看。voc2007数据集的下载和解压...
阅读(132) 评论(0)

caffe 初学参考链接

最近在学习caffe,也搜集了一些资料,主要是一些网上公开的博客资源,现汇总一下,以便后面参考。caffe 安装 编译py-faster-rcnn全过程 caffe依赖库安装(非root) 编译py-faster-rcnn的问题汇总及解决方法 caffe 基本架构 python版本 Caffe for Python 官方教程(翻译) 官方提供的示例 官方提供的示例注释版 caffe 模型微调 py...
阅读(98) 评论(0)

conda环境管理介绍

我们可以使用conda 来切换不同的环境,主要的用法如下: 1. 创建环境 # 指定python版本为2.7,注意至少需要指定python版本或者要安装的包 # 后一种情况下,自动安装最新python版本 conda create -n env_name python=2.7 # 同时安装必要的包 conda create -n env_name numpy matplotlib pytho...
阅读(143) 评论(0)

如何修改PKG_CONFIG_PATH环境变量

两种情况,如果你只是想加上某库的pkg,则选择下面其一: export PKG_CONFIG_PATH=/usr/lib/pkgconfig/  或者  export PKG_CONFIG_LIBDIR=/usr/lib/pkgconfig/  如果你想覆盖掉原来的pkg,选择后者。因为: PKG_CONFIG_LIBDIR的优先级比 PKG_CONFIG_PAT...
阅读(128) 评论(0)

R-CNN detection 运行问题及办法

运行caffe官方提供的jupyter 的rcnn detection,总是出现各种问题。先将问题及方法汇集在此: 1. Selective Search 的安装问题 按照官网,我下载了selective_search_ijcv_with_python,但是在我的linux matlab2017a上总是出现问题,`Error using CountVisualWordsIndex (l...
阅读(160) 评论(0)

由Google Protocol Buffer的小例子引起的g++编译问题

问题学习 Google Protocol Buffer 的使用和原理时,提供了一个小例子,讲述了protobuf的使用方法。假如已经有了如下文件: 其中writer.cpp如下:#include "lm.helloworld.pb.h" #include #include using namespace std; int main(void)...
阅读(78) 评论(0)

Makefile中 -I -L -l区别

转载自:http://blog.csdn.net/davion_zhang/article/details/41805641 我们用gcc编译程序时,可能会用到“-I”(大写i),“-L”(大写l),“-l”(小写l)等参数,下面做个记录: 例: gcc -o hello hello.c -I /home/hello/include -L /home/hello/lib -lworld 上...
阅读(59) 评论(0)

/usr/lib/libstdc++.so.6: version `GLIBCXX_3.4.15' not found错误的解决

转载自:http://www.cnblogs.com/weinyzhou/p/4983306.html 升级cmake时,提示“Error when bootstrapping CMake:Problem while running initial CMake”,第二次运行./bootstrap时,直接的给出了错误原因: 12345678 [roo...
阅读(185) 评论(0)

【论文阅读】Illuminating Pedestrians via Simultaneous Detection & Segmentation

论文来源 ICCV2017 arXiv report github代码(caffe-matlab) 本文的主要问题是行人检测。作者探讨了如何将语义分割应用在行人检测上,提高检测率,同时也不损坏检测效率。作者提出了一种语义融合网络(segmentation infusion networks)去促进在语义分割与行人检测上的联合监督。其中行人检测为主要任务,语义分割主要起到了矫正,指导共享层的特征生成...
阅读(185) 评论(0)

图像极坐标变换及在OCR中的应用

极坐标变换定义我们知道在二维坐标系中,有直角坐标系,也有极坐标系,二者的转换关系是: 如下图: 如图,直角坐标系的圆心与极坐标系的圆心一一对应,且圆弧BA可以通过极坐标变换到极坐标系ρ=r\rho=r的一条直线上,实现由圆形到直线的转换。这往往在一些图像处理中很有用。实际上,我们在图像处理中,往往还不是处理这样的圆弧,而更多的是处理圆环区域。如下, 同理,我们可以把(a...
阅读(175) 评论(0)

softmax logistic loss详解

softmax函数–softmax layersoftmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组z=(z1,z2,...zm)z=(z_1,z_2,...z_m),则其softmax函数定义如下: σi(z)=exp(zi)∑mj=1exp(zj),i=1,2..,m \sigma_i(z)=\frac{exp(z...
阅读(158) 评论(0)
206条 共14页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:282153次
    • 积分:4103
    • 等级:
    • 排名:第8738名
    • 原创:117篇
    • 转载:81篇
    • 译文:8篇
    • 评论:106条
    个人网站
    最新评论