GML AdaBoost Matlab Toolbox是一款非常优秀的AdaBoost工具箱,内部实现了Real AdaBoost, Gentle AdaBoost和Modest AdaBoost三种方法。
AdaBoost的训练和分类的结构都是相似的,可以参考前一篇《Boosting》,只简介一下GML。GML内部弱分类器使用的CART决策树。决策树的叶子表示决策,内部每个分支都是决策过程。从根部开始,每个决策结果指向下一层决策,最后到达叶子,得到最终的决策结果。一个比较简单的示意如下图所示:

对于特征{x1,x2,x3}值为{4,-1,2}的样本,上图决策树的最终决策为y=-1,而对于{3,-2,3}的样本预测值为+1。
工具箱中CART根的构造算法如下:
1. 对于n为特征的每个维度,分别找到阈值使得分类错误率最小
2. 选择错误率最小的第i维构造根节点:
a) 预测xi>Θ
b) 分别构造true/false子树分支,各自的分类结果作为叶子
在树中移动并最终到达叶子,我们把得到的预测结果错误分类一个样本的概率作为“树叶的错误率”。整颗决策树的构造使用如下规则:
1. 构造根节点
2. 选择错误率最小的叶子
3. 仅适用于和所选叶子相关的训练数据构造节点
4. 使用构造的节点代替所选的叶子
5. 重复2-4步直到所有的叶子错误率为0,或者到达循环结束的循环次数。<

这篇博客介绍了GML AdaBoost Matlab Toolbox,它包含Real AdaBoost, Gentle AdaBoost和Modest AdaBoost。GML内部使用CART决策树作为弱分类器,详细阐述了CART树的构造过程,并提供了示例代码展示如何用它来训练AdaBoost分类器。"
100301233,8557979,IDEA自定义方法注释快捷键设置指南,"['IDEA', '快捷键', '注释设置', '代码注释', '开发工具']
最低0.47元/天 解锁文章
369

被折叠的 条评论
为什么被折叠?



