本科系列课程参见:《软件学院那些课》
问题描述
约瑟夫(Joeph)问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。试设计一个程序求出出列顺序。
基本要求
利用单向循环链表存储结构模拟此过程,按照出列的顺序印出各人的编号
算法思想
游戏实现的关键是游戏信息的储存。包括玩家座位信息,玩家所报数信息以及密码信息。我们通过自定义单向循环链表Joeph_list存储结构来实现游戏过程的模拟。链表以结点连接。结点Node存储的信息包括每个人手中的密码、每个人的位置以及下一个结点在计算机中的存储位置,及指向下一个结点的指针。值得注意的是,信息“每个人的位置”是必不可少的,因为他不等同于结点在链表中的位置——但一个玩家被移除之后,链表后的元素位置会“前进”,而我们需要的玩家的位置始终是不变的。
玩家的报数,我们通过循环中计数器的递增实现,当顺序递增到链表中最后一个结点,而循环仍没有结束时,我们继续从第一个元素开始递增——及相当于最后一个玩家仍没有报数到m我们就从第一个玩家重头开始报数。直到计数器累加到m,则发现我们要移除的结点,记录并输出移出结点的信息,继续游戏。直到链表中元素被清空,程序结束。
算法的关键是将实际游戏场景抽象到链表中的元素的查找和移除上,要掌握清楚哪些数据代表哪些信息,并熟悉程序运行中各种判断的流程。
约瑟夫环算法实现与解析

本文介绍了约瑟夫环问题的描述、算法思想、数据结构和实现流程。使用单向循环链表存储结构,当玩家报数到m时出列,密码更新为m,直至所有玩家出列。提供了游戏测试和演示,代码可在GitHub下载。
最低0.47元/天 解锁文章
738

被折叠的 条评论
为什么被折叠?



