OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),predict(),非常简单。
下面来看神经网络 CvANN_MLP 的使用~
定义神经网络及参数:
//Setup the BPNetwork
CvANN_MLP bp;
// Set up BPNetwork's parameters
CvANN_MLP_TrainParams params;
params.train_method=CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale=0.1;
params.bp_moment_scale=0.1;
//params.train_method=CvANN_MLP_TrainParams::RPROP;
//params.rp_dw0 = 0.1;
//params.rp_dw_plus = 1.2;
//params.rp_dw_minus = 0.5;
//params.rp_dw_min = FLT_EPSILON;
//params.rp_dw_max = 50.;
可以直接定义CvANN_MLP神经网络,并设置其参数。

本文介绍了OpenCV ml模块中的CvANN_MLP模型,这是一种多层感知器(MLP)的人工神经网络。通过CvStatModel的train()和predict()接口,可以方便地进行训练和预测。文章详细讲解了如何定义神经网络参数,设置网络结构,以及如何使用训练好的网络进行数据分类。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



