自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

知来者逆的博客

计算机视觉学习笔记

  • 博客(399)
  • 资源 (49)
  • 收藏
  • 关注

原创 深度神经网络——什么是 K 均值聚类?

在研究用于执行 K 均值聚类的确切算法之前,先来看看什么定义聚类:集群只是项目组,而集群只是将项目放入这些组中。从数据科学的意义上来说,聚类算法确保集群中的所有数据点尽可能彼此相似。确保不同集群中的所有数据点尽可能彼此不同。聚类算法根据某种相似性度量将项目分组在一起。这通常是通过查找数据集中不同可能组的“质心”来完成的,尽管不完全如此。有多种不同的聚类算法,但所有聚类算法的目标都是相同的,即确定数据集固有的组。

2024-05-25 11:03:21 416

原创 BioMistral 7B——医疗领域的新方法,专为医疗领域设计的大规模语言模型

本文提出了生物医学领域专用的开源大规模语言模型BioMistral 7B,利用在 PubMed Central 进一步预训练的底层模型 Mistral,展示了医学领域专用大规模语言模型的新可能性。.该模型基于 PubMed Central 的高质量资源,是 Mistral 7B Instruct 的进一步演化,采用了量化和模型集成等技术。因此,与现有的开源 7B 模型相比,BioMistral 7B 在多语种医学评估基准中取得了卓越的性能。

2024-05-24 23:05:16 780

原创 LLM多模态——GPT-4o改变人机交互的多模式 AI 模型应用

OpenAI 发布了迄今为止最新、最先进的语言模型 –也称为““ 模型。这一革命性的人工智能系统代表了一次巨大的飞跃,其能力模糊了人类和人工智能之间的界限。GPT-4o 的核心在于其原生的多模式特性,使其能够无缝处理和生成文本、音频、图像和视频内容。这种将多种模式集成到单一模型中的做法尚属首次,有望重塑我们与人工智能助手互动的方式。但 GPT-4o 不仅仅是一个多模式系统。

2024-05-24 22:16:09 819

原创 深度神经网络——什么是联合学习?

训练人工智能模型的传统方法涉及设置服务器,通常通过使用基于云的计算平台来对模型进行数据训练。然而,在过去几年中,出现了另一种模型创建形式,称为联合学习。联合学习将机器学习模型引入数据源,而不是将数据引入模型。联合学习将多个计算设备连接到一个去中心化系统中,允许收集数据的各个设备协助训练模型。在联合学习系统中,属于学习网络一部分的各种设备均在设备上拥有模型的副本。

2024-05-24 10:18:39 658

原创 PersonalLLM——探索LLM是否能根据五大人格特质重新塑造一个新的角色?

本文的实验工作流程如下图所示。如图所示,本实验按照以下步骤进行。A. 首先,运行提示,生成具有独特个性特征的LLM角色B. 然后让生成的 LLM 角色完成故事写作任务C. 使用 “语言探究和字数统计”(LIWC)框架,研究 "LLM角色 "所描述的故事是否包含表明指定个性特征的语言模式D. 评估 LLM 角色(人类角色和 LLM 角色)所描述的故事。E. 让人类和 LLM 完成从故事中预测作家 LLM 角色性格特征的任务。

2024-05-23 22:30:00 534

原创 深度神经网络——什么是自动编码器?

自动编码器是一种无监督机器学习算法,它通过反向传播进行训练,目标值被设置为与输入值相等。其核心目标是对输入数据进行压缩,转换成一个更小的表示形式,如果需要原始数据,可以从压缩后的数据中重建。

2024-05-23 12:03:00 711

原创 Inflection-2.5:与 GPT-4 和 Gemini 相媲美的强大 LLM

一直在该领域掀起波澜,最近推出了 Inflection-2.5,该模型可与世界领先的 LLM 竞争,包括 OpenAI 的 GPT-4 和 Google 的 Gemini。大量的人工智能进一步推动了变形人工智能的快速崛起。由微软、NVIDIA 等行业巨头以及 Reid Hoffman、Bill Gates、Eric Sc​​hmidt 等知名投资人领投。

2024-05-22 23:43:39 735 1

原创 多模态交互式 AI 代理的兴起:探索 Google 的 Astra 和 OpenAI 的 ChatGPT-4o应用

OpenAI的发展和标志着交互式人工智能代理的新阶段:多模式交互式人工智能代理的兴起。这次旅程开始于和,它将语音激活的人工智能带入主流用途,并通过语音命令改变了我们与技术的交互。尽管有影响,这些早期的代理仅限于简单的任务,并且在复杂的查询和上下文理解方面遇到困难。成立之初标志着这一领域的重大演变。它使人工智能代理能够进行自然语言交互、回答问题、起草电子邮件和分析文档。然而,这些代理仍然仅限于处理文本数据。然而,人类自然地使用多种模式进行交流,例如语音、手势和视觉提示,使得多模式交互更加直观和有效。

2024-05-22 22:08:36 640

原创 深度神经网络——什么是混淆矩阵?

混淆矩阵是一种在机器学习和数据科学中广泛使用的分析工具,用于评估分类模型的性能。它通过比较实际类别和模型预测的类别来提供模型性能的详细信息。:混淆矩阵是一个表格,通常有两行两列(对于二分类问题)或更多行和列(对于多分类问题)。每一行代表实际类别,每一列代表预测类别。:矩阵中的元素表示不同类别的样本数量。:与其他性能指标(如简单准确度)相比,混淆矩阵提供了更全面的模型性能视图。它可以帮助识别模型在特定类别上的表现,特别是当模型倾向于错误地识别某个类别时。:虽然混淆矩阵非常有用,但它也有局限性。

2024-05-22 10:18:32 1331

原创 AIGC——ADD具有对抗学习和知识提炼功能的扩散模型

对抗性扩散蒸馏(ADD)是用于将预先训练好的扩散模型蒸馏为快速、低步骤的图像生成模型。所提出的方法结合了对抗性蒸馏和分数蒸馏损失,利用来自判别器的真实数据和来自扩散教师的结构理解,对稳定扩散和 SDXL 等训练有素的模型进行蒸馏。所提出的方法在进行一到两步的超快速采样时表现尤为出色,实验结果表明,它在很多情况下都优于之前的研究。另一方面,进一步增加步数会产生更好的结果,优于常用的多步扩散模型,如 SDXL、IF 和 OpenMUSE。不过,在图像质量和与 pronto 的一致性方面,单步采样生成模型仍有改进

2024-05-21 22:08:27 1092

原创 深度神经网络——什么是生成式人工智能?

生成式人工智能最近引起了很大的关注。该术语用于指依赖无监督或半监督学习算法来创建新的数字图像、视频、音频和文本的任何类型的人工智能系统。麻省理工学院表示,生成式人工智能是过去十年人工智能领域最有前途的进展之一。通过生成式人工智能,计算机可以学习与输入相关的基本模式,从而使它们能够输出类似的内容。这些系统依赖于生成对抗网络(GAN)、变分自动编码器和变压器。围绕生成式人工智能的炒作正在稳步增长,Gartner 将其纳入““ 报告。据该公司称,它是市场上最具影响力和发展最快的技术之一。

2024-05-21 11:39:12 717

原创 xLSTM——解析扩展长短期记忆的网络算法与应用

二十多年来,创举架构在许多深度学习突破和实际应用中发挥了重要作用。从生成自然语言到为语音识别系统提供动力,LSTM 一直是人工智能革命背后的驱动力。然而,即使是 LSTM 的创建者也认识到它们固有的局限性,导致它们无法充分发挥潜力。无法修改存储的信息、内存容量有限以及缺乏并行化等缺点为 Transformer 和其他模型的兴起铺平了道路,以超越 LSTM 来完成更复杂的语言任务。但在最近的一项进展中,Hochreiter 和他的团队引入了一个新的变体,称为解决这些长期存在的问题。

2024-05-21 09:11:21 963

原创 LLM彻底改变软件开发的语言模型——使用新的评估工具包验证集成开发环境(IDE)中的大规模语言模型

随着开发人员越来越频繁地使用大规模语言模型来完成复杂的工程任务,对大规模语言模型生成的代码进行稳健评估的需求也与日俱增。由于许多公司和产品都希望将大规模语言模型集成到工作流程中,因此仅靠现有的评估指标无法充分保证自动生成代码的质量和准确性。为解决这一问题,本文提出了 Copilot 评估工具包,并介绍了五个关键评估指标:方法生成、测试生成、对接字符串生成、错误修复和工作区理解。

2024-05-20 14:15:46 1288

原创 深度神经网络——什么是迁移学习?

在练习机器学习时,训练模型可能需要很长时间。从头开始创建模型架构、训练模型,然后调整模型需要大量的时间和精力。训练机器学习模型的一种更有效的方法是使用已经定义的架构,可能具有已经计算出的权重。这是背后的主要思想,采用已使用的模型并将其重新用于新任务。在深入研究迁移学习的不同使用方式之前,让来了解为什么迁移学习如此强大且有用的技术。

2024-05-20 08:28:02 631 1

原创 深度神经网络——什么是边缘人工智能和边缘计算

为了真正理解边缘AI,我们首先需要理解边缘计算,而理解边缘计算的最佳方式是 边缘计算就是将它与云计算进行对比。云计算是通过互联网提供计算服务。相比之下,边缘计算系统不连接到云端,而是在本地设备上运行。这些本地设备可以是专用的边缘计算服务器、本地设备、 或物联网 (IoT)。使用边缘计算有很多优点。例如,基于互联网/云的计算受到延迟和带宽的限制,而边缘计算则不受这些参数的限制。现在我们了解了边缘计算可以看看Edge AI。边缘人工智能结合了人工智能和边缘计算。人工智能算法在支持边缘计算的设备上运行。

2024-05-19 23:01:24 1049

原创 MagicDance——逼真的人类舞蹈视频生成

MagicDance 是一种新颖的方法,通过结合面部和动作表情传输来促​​进逼真的人类视频生成,并在野外动画生成中实现一致,而不需要任何进一步的微调,这表明比现有方法有显着的进步。此外,MagicDance框架在复杂的运动序列和不同的人类身份方面表现出卓越的泛化能力,使MagicDance框架成为人工智能辅助运动传输和视频生成领域的领先者。

2024-05-19 22:24:41 723

原创 Morpheus-1——探索人工智能可穿戴高设备如何重新定义梦境与现实的界限?

Morpheus-1是Prophetic设计的先进人工智能系统,正在重塑梦想与现实之间的界限。通过监测大脑状态并采用超声波全息图,它的目的是诱导和控制清醒梦。虽然对治疗和创造力有希望,但伦理问题也随之出现,需要持续的科学探索来优化技术并解决社会影响。Morpheus-1 代表着人工智能与我们的潜意识无缝集成的未来的重大飞跃,提供对迷人梦境的可控访问。

2024-05-19 11:11:41 820

原创 AIGC——BrushNet使用双分支扩散进行即插即用图像修复

在本文中,我们讨论了 BrushNet,这是一种新颖的即插即用双分支工程框架,它将像素级掩模图像特征嵌入到任何预先训练的扩散模型中,从而保证一致性并增强图像修复任务的结果。 BrushNet 框架引入了一种新颖的范例,在该范例下,该框架将图像特征和潜在噪声划分为单独的分支。图像特征和噪声潜伏的划分极大地减少了模型的学习负担,并有助于以分层方式细致地合并基本的屏蔽图像信息。除了 BrushNet 框架之外,我们还将讨论 BrushBench 和 BrushData,它们分别促进基于分割的性能评估和图像修复训练

2024-05-18 19:08:58 651

原创 LLM——探索大语言模型在心理学方面的应用研究

大规模语言模型(LLMs)为心理学研究提供了强大的工具,它们在各个心理学领域的应用前景广阔。随着技术的不断进步,LLMs有望在心理学研究中发挥更大的作用,帮助我们更深入地理解人类心理和行为。

2024-05-18 18:48:22 603

原创 深度学习模型部署——基于Onnx Runtime的深度学习模型CPU与GPU部署(C++实现)

以上就是在win 10下使用Onnx Runtime用CPU与GPU来对onnx模型进行推理部署的对比,可以明显的看出来,使用GPU之后的推理速度,但在正式的大型项目中,在win下使用GPU部署模型是不建议,一般都会选择Linux,那样对GPU的利用率会高出不少,毕竟蚊腿肉也是肉。

2024-05-18 18:17:38 684

原创 LLM——大语言模型在解梦中的应用探索与研究

虽然研究人员已经迈出了人工智能解梦的第一步,但这项技术在很大程度上仍未得到证实。高端应用可能需要数年时间才能进入消费市场。如今有没有办法利用人工智能来解梦?

2024-05-17 23:25:25 758 1

原创 YOLO实例分割——比对Yolov8与Yolov9在医学图像实例分割数据集上的实践

对于像YOLO和SSD这样的轻量级模型,在前向传递过程中存在信息降级的风险。因为,**信息丢失**主要是由于它们架构中使用的下采样操作引起的。这些模型通过池化和步幅卷积迅速减小空间维度,将输入图像压缩成紧凑的特征表示。虽然这有助于增加接受域并减少计算成本,但它导致了对检测小的和密集堆积的对象至关重要的细粒度细节的丢失。

2024-05-17 10:26:09 848

原创 探索人工智能在教育领域的未来,以人为本的学习方法的解析

本文重点探讨计算机辅助文本分析在提高教育质量方面的潜力。具体来说,它探讨了如何利用人工智能和机器学习方法,通过深入了解教育内容和师生互动来改进教学。它以理查德-埃尔莫尔的教学核心框架为基础,表明人工智能/机器学习可为教师辅导、学生支持和教育内容开发带来显著效益。会议还强调,人工智能/ML 不仅有助于简化行政任务,还有助于提供个性化的学习途径、向教育者提供反馈以及了解教学动态。最后,与会者主张,需要采取一种平衡的方法,使人工智能/ML 技术与教育目标相一致,并考虑到道德因素、数据质量和人类专业知识的整合。

2024-05-16 18:25:28 871

原创 YOLO损失函数——SIoU和Focal Lossr损失函数解析

在深度学习的目标检测领域,损失函数扮演着至关重要的角色,它们不仅衡量模型预测与实际标注之间的差异,还引导模型参数的优化方向。SIoU (Shape-Aware IoU) 损失是一种用于边界框回归的先进损失函数,它综合考虑了形状、距离和纵横比的对齐,以提升模型的收敛速度和预测准确性。SIoU损失通过结合角度成本、距离成本、形状成本和IoU成本,优化了边界框的定位精度。

2024-05-15 19:01:29 758

原创 AIGC——Instant-Style文本到图像生成中的样式保留算法解析

在本文中,我们讨论了 Instant-Style,这是一个通用框架,它采用两种简单但有效的策略来实现内容和风格与参考图像的有效分离。InstantStyle 框架的设计目的是解决当前基于调整的扩散模型在图像生成和定制方面所面临的问题。Instant-Style 框架实现了两个重要策略:一种简单而有效的方法,用于将样式和内容与特征空间内的参考图像解耦,该方法是基于同一特征空间内的特征可以相互添加或减去的假设进行预测的。

2024-05-15 13:08:14 601

原创 数字人解决方案——ID-Animator可保持角色一致生成视频动画

在这项研究中,主要目标是在文本到视频 (T2V) 模型中实现特定于 ID 的内容生成。为此,本文引入一个 ID-Animator 框架来驱动 T2V 模型使用 ID 图像生成特定于 ID 的人类视频。通过基于公开可用资源构建面向 ID 的数据集,结合解耦字幕生成和人脸池构建,促进 ID-Animator 的训练。此外,本文开发一种随机人脸参考训练方法,以最大限度地减少参考图像中与 ID 无关的内容,从而将适配器的注意力引导到与 ID 相关的特征上。

2024-05-14 23:18:30 960

原创 探索执法部门如何在不依赖面部识别的情况下追踪感兴趣的人

随着人工智能与执法的日益融合,在保护隐私和确保公共安全之间取得平衡成为首要问题。虽然人工智能有望加强公共安全措施,但它也有可能侵犯隐私和滥用权力。通过正确的保障措施和实践,人工智能可以用来服务和支持更大的利益。对于组织来说,建立道德和法律框架来管理人工智能的使用和保护隐私权至关重要。这就需要制定旨在促进人工智能驱动系统的透明度、问责制和监督的立法举措和指导方针。实施数据匿名化和严格的安全协议等最佳实践也很重要,这将有助于减轻与人工智能技术相关的固有风险。

2024-05-14 17:53:52 782

原创 数字人解决方案——AniTalker声音驱动肖像生成生动多样的头部说话视频算法解析

AniTalker是一款先进的AI驱动的动画生成工具,它超越了简单的嘴唇同步技术,能够精准捕捉并再现人物的面部表情、头部动作以及其他非言语的微妙动态。这不仅意味着AniTalker能够生成嘴型精准同步的视频,更重要的是,它还能够呈现自然流畅的表情变化和动作,使得最终的动画效果更加逼真,更具吸引力。通过AniTalker,动画制作不再局限于专业的动画师或高昂的制作成本。现在,任何拥有一张人物照片和相应的音频文件的用户,都能够轻松制作出高质量的说话动画视频,这极大地拓宽了个人表达和创意创作的边界。

2024-05-13 18:34:20 1363 1

原创 AIM可以像 LLM 一样进行扩展的自回归图像模型

AIM(Autoregressive Image Model)是一种自回归学习图像模型,它是对语言模型的图像版本进行了推广。该模型的预训练图像特征质量会随着模型大小和数据质量的提高而提高,从而带来更好的性能。同时,下游任务的性能也会随着预训练性能的提高而提高。通过在大规模图像数据集上进行预训练,AIM 模型可以学习到丰富的图像特征,这些特征可以被迁移到各种下游视觉任务中,如图像分类、目标检测、语义分割等。据报道,在 20 亿张图像上预训练了 70 亿个 AIM 参数,并在 ImageNet-1k 任务中达

2024-05-13 13:19:45 953

原创 全面了解 LLM 微调——根据应用场景独特需求定制大型语言模型

微调,作为解锁Alpaca、Falcon和GPT-4等大型语言模型(LLM)全部潜力的关键环节,已经演化为一种更为精细和目标化的过程,为形形色色的任务量身定制解决方案。我们目睹了为特定角色量身定制的单任务微调,以及如LoRA和QLoRA这样的参数高效微调(PEFT)方法的发展。这些方法通过优化模型的特定部分,旨在实现训练过程的高效和成本效益,推动了高级AI功能的普及和应用。

2024-05-12 23:03:58 948

原创 计算机视觉——基于改进UNet图像增强算法实现

在低光照条件下进行成像非常具有挑战性,因为光子计数低且存在噪声。高ISO可以用来增加亮度,但它也会放大噪声。后处理,如缩放或直方图拉伸可以应用,但这并不能解决由于光子计数低导致的低信噪比(SNR)。短曝光图像受到噪声的影响,而长曝光可能会引起模糊,通常也不切实际。已经提出了各种去噪、去模糊和增强技术,但在极端条件下,如夜间视频速率成像,它们的有效性是有限的。有物理手段可以增加低光照下的SNR,包括打开光圈、延长曝光时间以及使用闪光灯。

2024-05-12 11:06:41 825

原创 计算机视觉——OpenCV实现Lucas-Kanade 光流追踪

光流法是计算机视觉中用于估计图像序列中物体运动的关键技术。它类似于观察夜空中的彗星,通过其在天空中的运动轨迹来追踪它的路径。在图像处理中,光流帮助我们理解像素点如何在连续的帧之间移动。

2024-05-11 17:09:48 1025 3

原创 从静态PPT到智能演讲——人工智能在演示文稿中的应用

人工智能工具在创建和改进演示文稿方面提供了显著的帮助,它们通过自动化和智能化的设计建议,使演讲者可以更专注于内容的传达和演讲的练习。AI工具能够提供个性化的设计模板、内容布局建议,甚至是演讲稿的撰写辅助,极大地提高了演示文稿制作的效率和质量。然而,AI工具并不能完全取代人类的专业知识和经验。一个经验丰富的商业演示技能教练能够提供个性化的培训、反馈和指导,这些都是AI工具难以实现的。教练能够理解演讲者的个人风格、演讲内容的深层含义以及观众的具体需求,从而提供更为精准和深入的建议。

2024-05-11 13:32:08 720

原创 大型动作模型 (LAM):AI 驱动的交互的下一个前沿

现在人工智能中几个关键的领域,包括生成式人工智能(Generative AI)、大型动作模型(Large Action Models, LAM)、以及交互式人工智能(Interactive AI)。生成式人工智能是一种能够创建新内容(如图像、音乐、文本等)的AI技术。它通常依赖于大型语言模型(如GPT系列)或其他类型的生成模型,如生成对抗网络(GANs)

2024-05-10 23:25:49 1082

原创 Yolov8目标检测——在Android上部署Yolov8 tflite模型

TensorFlow Lite (tflite) 是一种用于移动和嵌入式设备上的机器学习模型的格式。它允许开发者将训练好的 TensorFlow 模型转换为一个更小、更快、更高效的格式,以便于在资源受限的环境中运行,比如智能手机和微控制器。

2024-05-10 19:13:33 1466 5

原创 实例分割——Mask R-CNN、YOLOV8、RTMDET、DeepLab四种实例分割算法比对

与目标检测不同,实例分割不仅识别对象的存在,还为每个检测到的对象生成一个像素级别的掩码,这允许更精细的分析和编辑。从上面这个例子可以看出,检测任务定位了对象的包围框,语义分割分割出了人这个类别,不过把所有的人一起分割了,实例分割区分出了每个人,并分别进行了分割。为了解决RoI Pooling中的量化问题,Mask R-CNN引入了RoIAlign层,它通过双线性插值精确地计算输入特征在RoI上的值,而不进行量化,从而更好地保持空间对齐,这对于生成高质量的分割掩码至关重要。

2024-05-09 20:44:48 1028

原创 计算机视觉——Opencv blobFromImage与torchvision实现数据标准化

是 OpenCV 的深度神经网络(DNN)模块中的一个函数,它用于将图像转换为深度学习模型所需的输入格式,主要是对传入的图像进行的转换包括图像尺寸调整、均值减法、缩放等预处理步骤,以便图像数据能够适配深度学习模型的输入要求。

2024-05-09 11:10:15 795 1

原创 LLM——大语言模型完整微调策略指南

微调大型语言模型(LLMs)是一个精细的过程,它涉及两个主要阶段:首先是使用大型预训练模型,其次是通过特定于目标任务或领域的数据集进行第二阶段的训练来更新模型的参数。这个过程允许模型学习并吸收特定于较小领域或任务的细微差别、模式和目标。预训练阶段:在这个阶段,模型从庞大且多样化的文本语料库中学习,获取广泛的语言理解能力。这为模型提供了一个坚实的基础,包括对语言的基本结构、语法、词汇以及不同话题的广泛知识。

2024-05-08 14:04:34 1261

原创 数字人解决方案——AniPortrait音频驱动的真实肖像动画合成

AniPortrait,这是一个新颖的框架,旨在生成由参考肖像图像和音频样本驱动的高质量动画。只需输入参考图像和音频剪辑,AniPortrait 框架就能够生成具有自然头部运动和平滑嘴唇运动特征的肖像视频。通过利用扩散模型强大的泛化能力,AniPortrait 框架生成的动画能够显示令人印象深刻的逼真图像质量和逼真的运动。 AniPortrait 框架的工作分为两个阶段。首先,AniPortrait 框架从音频样本中提取中间 3D 表示,并将它们投影到一系列 2D 面部标志中。接下来,该框架采用鲁棒的扩散模

2024-05-08 09:03:55 1461

原创 计算机视觉——OpenCV Otsu阈值法原理及实现

Otsu阈值法,也被称为大津算法,是一种在图像处理中广泛使用的自动阈值分割技术。这种方法由日本学者大津展之于1979年提出,旨在根据图像的灰度直方图来自动选择最佳全局阈值。Otsu阈值法的核心思想是最小化类内方差或最大化类间方差。预处理:对输入图像进行预处理,以减少噪声和增强图像特征。常见的预处理方法包括高斯平滑滤波,这有助于平滑图像,减少随机噪声。灰度直方图:计算图像的灰度直方图,即统计图像中每个灰度级出现的频率。直方图可以提供图像的灰度分布信息。阈值计算:这是Otsu算法的关键步骤。

2024-05-07 18:54:18 1106 1

yolov5-v7.0河道漂浮物检测.rar

河流作为水环境中的重要组成部分,在供给水源、维持生态、美化景观等诸多方面扮演着不可或缺的角色。但是,目前人类活动和自然因素导致河面频繁出现大量漂浮物,严重破坏了河道景观和水生态环境,已成为河道监管中重点关注的问题。在国内各省市全面推行落实“河长制”政策的背景下,很多地方开始采用摄像头进行河湖可视化监管以促进河湖面貌改善,但是人工参与程度依然较高,单纯依靠人力观看大量的监控资料来判断河湖状况。在这种情况下,推动当前河道视频分析的智能化与无人化已成为河流长效管护的迫切需求。但是,河流环境本身复杂多样,例如,河流结构性差、易受动态光影和水波扰动等噪声的影响,现有的视觉方法应用至水面漂浮物监测任务中仍存在一些问题需要解决。围绕上述需求及难点,本文开展了基于视觉分析的河道漂浮物检测与跟踪方法研究,并进行了实验应用。使用的算法是yolov5 v7.0这个版本,里面包含了5000多张已经标注好的数据集,下载之后直接训练就可以,算法训练可参考:https://blog.csdn.net/matt45m/article/details/138141616?spm=1001.2014.3001.5502

2024-04-24

YOLOv8与DeepSORT实现目标追踪

YOLOv8是一种基于图像全局信息进行预测并且它是一种端到端的目标检测系统,最初的YOLO模型由Joseph Redmon和Ali Farhadi于2015年提出,并随后进行了多次改进和迭代,产生了一系列不同版本的YOLO模型,如YOLOv2、YOLOv3、YOLOv4,YOLOv5等。这些更新和迭代旨在提高模型的性能、精度和速度,使其在实际应用中更具竞争力。 YOLOv8的核心思想是将图像划分为网格,并在每个网格单元中预测物体的边界框和类别。这种设计使得YOLO非常适合实时目标检测应用,因为它可以在较短的时间内完成目标检测任务。 多目标跟踪往往面临一些挑战,例如需要同时跟踪多个目标、目标可能频繁遮挡,这些因素使得目标跟丢成为一个常见问题。为了解决这些问题,可以借助跟踪器 DeepSORT 以及检测器 YOLO v8,从而构建一个高性能的实时多目标跟踪模型。 参考博客:https://blog.csdn.net/matt45m/article/details/134237238#comments_32297294

2024-04-18

手机目标检测数据集.rar

这是一个手机目标检测的数据集,数据集的标注工具是labelimg,数据格式是voc格式,要训练yolo模型的话,可以使用脚本改成txt格式,数据集标注了手机,标签名:telephone,数据集总共有1960张,有一部分是直实数据,有一部分是是真实数据。数据集下载之后就可以直接使用。

2024-04-14

标注扑克牌目标识别数据集

这是一个检测扑克牌种类的数据集,检测种类目前只有6种,分别是 ``` "queen", "ten", "nine", "king", "jack", "ace" ``` 数据集共含有363张图片,标注的工具是labelimg,数据标签是xml。

2024-04-13

实时语义分割ENet算法Pytorch复现与模型训练

ENet架构是专为语义分割而设计的。与成熟的深度学习工作站相比,主要目标是有效利用嵌入式平台上可用的稀缺资源。Enet工作在完成此任务方面取得了很大的收获,与此同时,匹配并有时超过了现有的baseline,这些baseline对计算和内存的要求更高。ENet在NVIDIA TX1硬件上的应用体现了实时便携式嵌入式解决方案。即使主要目标是在移动设备上运行网络,它在NVIDIA Titan X等高端GPU上也非常有效。在需要处理大量高分辨率图像的数据中心应用中,这可能被证明是有用的。ENet允许以更快,更高效的方式执行大规模计算,这可能会节省大量资金。 资源是对论文的复现,可用于时实语义分割,转了模型之后可以部署在边缘设备上,关于算法的应用与理解可以参考个人的博客。里面有详细的介绍与训练方向。

2024-04-10

基于深度学习实现的复杂背景文档二值化的算法实现

阈值分割可以被视为一个分类问题,通常涉及两个类别,这也是为什么阈值分割也被称为二值化。对于文档图像,我们期望阈值算法能够正确地将墨水分类为黑色,将纸张分类为白色,从而得到二值化图像。对于数字灰度图像,最简单的实现方法是选择一个阈值值,比如图像二值化,并将高于这个值的灰度级别分配为白色,将剩余的级别分配为黑色。问题在于正确找到这个值,以便能够完美匹配前景和背景元素。 在这里将探讨如何通过使用基于卷积神经网络(CNN)的U-Net架构训练的模型进行分类,来实现具有不同类型问题的文档二值化。CNN的典型用途在于分类任务,其中对图像的输出是一个单一的类别标签。然而,在许多视觉任务中,期望的结果不仅包括图像中物体是否存在,还包括其定位,即每个像素都应该被分配到一个类别标签。

2024-04-10

夜晚图像雾霾图像增强C++/python部署

在夜间雾霾场景中,可见性经常受到低光照、强烈光晕、光散射以及多色光源等多种因素的影响而降低。现有的夜间除雾方法常常难以处理光晕或低光照条件,导致视觉效果过暗或光晕效应无法被有效抑制。本文通过抑制光晕和增强低光区域来提升单张夜间雾霾图像的可见性。为了处理光晕效应,我们提出了一个光源感知网络来检测夜间图像的光源,并采用APSF(大气点扩散函数)引导的光晕渲染。我们的框架在渲染图像上进行训练,实现了光晕的抑制。此外,我们还利用梯度自适应卷积来捕捉雾霾场景中的边缘和纹理。通过提取的边缘和纹理,我们在不丢失重要结构细节的情况下增强了场景的对比度。为了提升低光强度,我们的网络学习了一个注意力图,然后通过伽马校正进行调整。这个注意力图在低光区域有较高的值,在雾霾和光晕区域有较低的值。通过在真实的夜间雾霾图像上进行广泛的评估,我们的方法证明了其有效性。

2024-04-10

基于NCNN轻量级PaddleOCRv4模型C++推理

PaddleOCR 提供了基于深度学习的文本检测、识别和方向检测等功能。其主要推荐的 PP-OCR 算法在国内外的企业开发者中得到广泛应用。在短短的几年时间里,PP-OCR 的累计 Star 数已经超过了32.2k,常常出现在 GitHub Trending 和 Paperswithcode 的日榜和月榜第一位,被认为是当前OCR领域最热门的仓库之一。 PaddleOCR 最初主打的 PP-OCR 系列模型在去年五月份推出了 v3 版本。最近,飞桨 AI 套件团队对 PP-OCRv3 进行了全面改进,推出了重大更新版本 PP-OCRv4。这个新版本预计带来了更先进的技术、更高的性能和更广泛的适用性,将进一步推动OCR技术在各个领域的应用。 参考博客:https://blog.csdn.net/matt45m/article/details/134713935#comments_32019413

2024-04-02

检测出图像中的几何形状并测量出边长、直径、内角(python和opencv实现)

图像里面的线段测量,首先要理解“每度量比的像素”(pixels per metric ratio),它类似于比例尺,通过已知图像上一个对象的尺寸和该对象在图像中所占像素的数量,可以得到一个比例关系,从而可以将其他物体的像素转换为实际度量单位(如厘米、毫米等)。 关键属性包括: 已知长度:需要知道图像中一个物体的实际长度,通常是以某种可测量的单位(例如毫米、英寸等)来表示。 像素数量:该已知长度物体在图像中所占据的像素数。这可以通过在图像中测量该物体的像素宽度或高度来获取。 有了这两个属性,就可以计算出每个度量单位所对应的像素数。这个比例关系将图像中的像素转换为实际的度量单位,从而可以测量其他物体的大小或长度。

2024-03-29

YOLOv8目标检测、语义分割、状态估计、目标追踪模型部署带GUI界面

Ultralytics YOLOv8是一种前沿的、最先进的(SOTA)模型,它在前代YOLO版本的成功基础上进行了进一步的创新,引入了全新的特性和改进,以进一步提升性能和灵活性。作为一个高速、精准且易于操作的设计,YOLOv8在广泛的领域中,包括目标检测与跟踪、实例分割、图像分类以及姿势估计等任务中,都表现出色。实例分割在物体检测的基础上迈出了更进一步的步伐,它不仅可以识别图像中的单个物体,还能够精确地将这些物体从图像的其他部分中分割出来。这是一个集成了YoloV8目标检测、实例分割、姿态估计与目标追踪的项目,界面是用PyQt5写的,可以读入图像,视频与摄像头。可用于对比与参考这几个算法的差异与如何部署。关于源码的运行与部署可以参考博客《YOLOv8项目解析——一文搞定目标检测、语义分割、状态估计、目标追踪算法原理与模型部署》,博客地址:http://t.csdnimg.cn/PbVNu

2024-03-26

图像抠图DIS-自然图像中高精度二分图像抠图的方法(C++推理代码)

二分图像分割(DIS),旨在从自然图像中分割高精度的对象。为此,我们收集了第一个大规模DIS数据集,称为DIS5K,其中包含5470张高分辨率(例如2K、4K或更大)图像,涵盖各种背景中的伪装、突出或精细物体。DIS使用极细粒度的标签进行注释。此外,我们还引入了一个简单的中间监督基线(IS-Net),使用特征级和掩码级指导进行DIS模型训练。IS-Net在建议的DIS5K上优于各种前沿基线,使其成为一个通用的自学习监控网络,可以促进DIS的未来研究。此外,我们设计了一个新的度量,称为人类校正努力(HCE),它近似于纠正假阳性和假阴性所需的鼠标点击操作数。HCE用于测量模型和实际应用程序之间的差距,因此可以补充现有指标。最后,我们进行了最大规模的基准测试,评估了16种具有代表性的分割模型,对对象的复杂性进行了更深入的讨论,并展示了几种潜在的应用(例如背景去除、艺术设计、三维重建)。希望这些努力能为学术界和工业界开辟有希望的方向。

2024-03-24

百度人像抠图C++模型部署完整包

PP-HumanSeg v2人像分割方案是一项重要的突破,采用了深度学习技术,以96.63%的mIoU精度和仅15.86ms的推理耗时,在人像分割领域刷新了SOTA指标。该方案不仅支持商业应用,而且可零成本、开箱即用。 相比于之前的版本,PP-HumanSeg v2在推理速度和精度上都有显著提升,肖像分割模型推理速度提升45.5%,mIoU精度提升3.03%。通用人像分割模型推理速度提升5.7%,mIoU精度提升6.5%。 通过以上优化措施,PaddleSeg的肖像分割模型在保证分割精度的情况下,大幅减少了参数量,提高了模型的轻量化程度,并且通过全局上下文信息的汇集和特征融合,进一步提升了模型的语义理解能力和分割效果。

2024-03-23

人像自动抠图LFM训练代码与C++推理部署代码

图像抠图(Image Matting)是一个在工业界和视觉研究领域都非常重要的研究课题。从 2000 年开始,对图像抠图及相关研究问题进行了大量研究,产生了一系列对计算机视觉和计算机图形学研究都有深远影响的工作,例如 GrabCut、Guided Filter、Closed Form Matting、Poisson Matting、Bayesian Matting 等。在好莱坞的动作大片、迪士尼的动画巨作、Office 以及 Adobe Photoshop 的一些功能中都能看到抠图算法的应用。 解决抠图问题需要我们分别求解出图像的前景、背景和 alpha matte。Alpha matte 即我们常说的 alpha 通道,基于 alpha 通道我们可以将前景和任意背景进行重新组合得到新的图像。因此,alpha matte 是和原图同大小的一个单通道图像,每个像素都对应于原 RGB 图像相同位置像素的 alpha 值。关于算法解析与实现具体步骤可看我的博客《人像抠图PP-Matting——支持多场景精细化高精度人像抠图(C++模型推理)》

2024-03-22

PP-Matting高精度抠图模型C++推理

PP-Matting是PaddleSeg自研的高精度抠图模型,通过引导流设计实现语义引导下高分辨率图像抠图。 追求更高精度,推荐使用该模型。且该模型提供了512和1024两个分辨率级别的预训练模型。 PP-MattingV2是PaddleSeg自研的轻量级抠图SOTA模型,通过双层金字塔池化及空间注意力提取高级语义信息,并利用多级特征融合机制兼顾语义和细节的预测。 对比MODNet模型推理速度提升44.6%, 误差平均相对减小17.91%。追求更高速度,推荐使用该模型。

2024-03-21

离线语音识别C++实现

这是一个语音识别的C++实现的demo,使用的IDE是vs2019,压缩包里面包含了所有用到的依赖,下载之后解压配置包含目录,库目录,附加依赖项,就可以运行出效果。

2024-03-20

SadTalker语音驱动肖像图像数字人源码与模型

SadTalker 模型在三维运动场中学习如何从音频中生成3DMM的3D运动系数,包括头部姿势和表情,并利用全新的3D面部渲染器来生成自然的头部运动。 为了学习真实的运动系数,研究人员将音频和不同类型的运动系数之间的联系进行了显式建模。他们设计了蒸馏系数和3D渲染的脸部,从音频中学习准确的面部表情。同时,他们还设计了条件VAE,即 PoseVAE,用于合成不同风格的头部运动。最后,他们将生成的三维运动系数映射到人脸渲染的无监督三维关键点空间,并合成最终的视频。 在实验中,研究人员证明了 SadTalker 模型在运动同步和视频质量方面实现了最先进的性能,为通过人脸图像和语音音频生成会说话的人物头像视频提供了一种有效的方法。 参考博客《数字人解决方案— SadTalker语音驱动图像生成视频原理与源码部署》 博客链接:https://blog.csdn.net/matt45m/article/details/13676466

2024-03-18

Wav2lip 语音驱动Ai数字人源码与模型

传统的基于像素的人脸重建损失无法有效约束音频-口型同步。由于面部重建损失是整个图像的计算结果,而唇部区域只占图像的很小一部分,因此无法充分关注唇部细节。此外,在人脸重建的训练过程中,对口型的优化往往在训练的中后期才开始,导致前期监督信息不足。 传统的基于GAN的判别器在音频-口型同步检测方面准确率较低。这些判别器通常只使用单帧图像来评估口型同步,缺乏时间上下文信息,因此无法有效评估口型动态变化的质量。此外,生成过程中可能出现伪影,导致GAN判别器更容易关注视觉伪影而忽略音频和口型的对应关系。 为了解决以上问题,wav2lip提出了一个专家口型同步判别器,该判别器在真实视频中进行预训练,并包含多帧信息,可用于判断音频和口型是否同步。实验证明,相比于基于像素的人脸重建方法,这个专家判别器在口型同步判别任务上更为准确。在训练阶段,该专家判别器保持冻结状态,以确保其判断结果不受伪影的干扰。 参考博客:《数字人解决方案——Wav2lip语音驱动唇部动作的技术原理(附整合包下载)》

2024-03-16

用于边缘检测的轻量级密集神经网络C++推理

LDC 是一种基于 CNN 的边缘检测模型,与参数小于100万的轻量级模型相比,LDC生成了薄边缘图并取得了最高分数(即ODS),与参数约为3500万的重型体系结构相比,性能相似。LDC提供了使用不同边缘检测数据集的定量和定性结果,并与现有技术模型进行了比较。所提出的LDC不使用预训练的权重,需要直接的超参数设置。

2024-03-10

P2PNet密集人流统计C++实现

P2PNet提出了一个新的度量标准,称为密度归一化平均精度(nAP),以提供更全面和更精确的性能评估。腾讯优图团队在这个框架下设计了一个直观的解决方案,称为P2PNet,并且实现了state-of-the-art。 P2PNet忽略了所有冗余步骤,直接预测一系列人头点的集合来定位图像中的人群个体,这完全与真实人工标注保持一致。通过深入分析,研究者发现实现该方法的一个核心策略是为预测候选点分配最优的学习目标,并通过基于匈牙利算法的一对一匹配策略来完成了这一关键步骤。实验证明,P2PNet不光在人群计数基准上显著超越了已有SOTA方法,还实现了非常高的定位精度。

2024-03-09

C++实现AES256加密

AES是用来替代DES的新一代加密标准,具有128bit的分组长度,支持128、192和256比特的密钥长度,它是目前最流行的加密算法之一。

2024-03-09

视频一键祛水印/视频目标移除

ProPainter它融合了图像和特征修复的优势,以及高效的Transformer技术,旨在提供高质量的视频修复效果,同时保持高效性。 ProPainter包含以下功能: 1. 对象去除:能够轻松去除视频中的不需要的对象。 2. 水印删除:可用于删除视频中的水印,提高视觉质量。 3. 视频内容完整性修复:能够修复损坏的视频内容,使其看起来 完整和连贯。 项目整合了Segment-and-Track Anything与ProPainter实现视频一键目标移除与一键祛除水印,这是一个安装包,下载之后直接运行脚本就可以。

2023-10-23

基于InsightFace、CodeFormer实现高清换脸与验证换脸后效果能否通过人脸比对、人脸识别算法

从运行结果对比来看,如果欧氏距离使用默认值1.24,所换的脸都能通过识别算法,但从余弦相似度的结果来看,使用CodeFormer修复人脸后,人脸的特征还是有一定的损失。在算法没有优化之前,直接换脸结果的余弦相似度都在0.8以上。但现在人脸验证的一般要求余弦相似度要在0.95以,所以如果直接现在的算法是无法通过人脸验证的算法,除非验证算法的阈值设置不合理。我试着去优化部分算法,但目前提升并不明显,如果使用一些盘外招,还是可以冲击一下95%余弦相似度。

2023-10-05

一键提取视频语音并转文本带UI界面

对于不是视频编辑专业人员,处理起来还是比较麻烦的,但网上也有好多可以用的小工具,这些工具大多数都标榜有自己技术和模型,但都是在线模型或者使用过一段时间之后就无法再使用了,这些工具实际上都是基于一些大公司提供的接口衍生出来的AI工具,使用效果也不错。但在处理的过程中,处理的文件要上传到大公司的服务器进行处理,这里可能会涉及到一些数据的安全问题。这些数据很大一部分有可能会涉及到数据泄露与安全的问题。 这个项目的核心算法是基于PaddlePaddle的语音识别加Python实现,使用的模型可以有自己训练,支持本地部署,支持GPU与CPU推理两种文案,可以处理短语音识别、长语音识别、实现输入的语音识别。

2023-09-30

实现视频目标移除/视频水印移除/视频掩码补全/视频外扩等多个实用功能

视频修复(Video Inpainting)是指通过填补缺失区域或去除不需要的内容,修复视频中的损坏或缺失部分的任务。视频修复可以分为对象移除和对象补全两个方面。对象移除是将视频中的不需要的对象从视频中删除,对象补全是填补视频中缺失的区域。 视频修复算法可以基于传统方法或深度学习方法。传统方法使用纹理合成技术,从周围的帧中复制纹理来填补缺失区域。深度学习方法使用生成对抗网络(GAN)、变分自编码器(VAE)或Transformer等架构,学习从输入视频中生成缺失区域的映射关系。 视频修复在电影制作、视频编辑、监控视频修复等领域有广泛应用。它可以提高观看体验,也可以应用于视频分析和计算机视觉任务中。

2023-09-30

语义分割实现人脸图像的皱纹检测定位与分割数据集

人脸皱纹主要区分有额纹、川字纹、眼下纹、法令纹、嘴角纹,眼角纹等,在美颜相机,智能医美等于应用领域里,需要对人脸皱纹进行检测、定位、分割,测量等。

2023-09-13

开放世界万物识别模型推理C++代码,目前可以识别的目标有2万1000多种

- Detic采用了一种完全不同的方法,它选择了覆盖整个图像的最大面积提议(通常几乎包括整张图片)。 - 然后,Detic将整个图像的类别标签分配给这个最大面积的提议。 - 这种方法的关键在于,Detic不再依赖于传统的proposal级别的标签分配,而是将整个图像视为一个整体,并为其分配类别标签。 - 这种做法消除了传统方法中可能导致误差的标签和bbox分配过程,简化了训练流程,提高了性能,特别是在检测新颖类别时。 Detic方法通过选择整个图像的最大提议并将整个图像的类别标签分配给它,从而消除了传统方法中可能出现的标签和bbox分配误差。这种简化和创新的方法有望提高目标检测的性能和鲁棒性,特别是在具有挑战性的场景中。

2023-09-13

基于yoloV5的x下光危险物物品识别推理代码带UI界面

1.识别的目标是分别是有:'lighter','scissors','powerbank','pressure','knife','zippooil','handcuffs','slingshot','firecrackers','nailpolish'。 2.违禁品中有要检测的危险品是小巧的打火机,考虑到其在复杂拥挤环境中的易遮挡性,有时候是很难精确检测到的,我这个用的是S模型,检测效果还可以,如果对精度有更高的要求,除了加大训练数据之外还可以选择更大的模型或者使用YOLOv8。 3.在安检这个场景中,出现漏检要比出现错检所触发的问题更严重,为了优化漏检率,可以适当放大置信度和加入一些相近的样本,还有场景负样本。

2023-08-06

实时对话数字人解决方案实现源码

​ 1.这是一个能实时对话的虚拟数字人demo,使用的是NeRF(Neural Radiance Fields 2.文本转语音是用了VITS语音合成 3.语言模型是用了新开源的ChatGLM2-6B,当前的项目暂时没有加上这个接口 4.声音克隆用的是PaddleSpeech,这个语音克隆训练起来很快,使用的数据集也相对少一些,当前的项目暂时没有加上语音克隆。 ​

2023-07-22

最强伴奏人声提取工具开源免费

一键安装,直接使用!Ultimate Vocal Remover UVR5,最强人声伴奏提取工具,可以提取音频或者视频里面的人声与伴奏,直接安装,不需要额外的依赖,支持CPU和GPU,处理速度快,提取效果完美,无任何限制。

2023-07-10

智能黑白图像自动上色C++源码

这是黑白图像自动上色的C++源码,IDE是Vs2019,依赖OpenCV和ncnn,所有的依赖都包含在里面了,下载之后,把依赖添加到环境就可以运行。

2023-01-08

烟火检测标注好的数据集

1.烟火检测数据集,xml格式,总共有2000多张图像。 2.可以用来训练目标检测。 3.参考博客:https://mp.csdn.net/mp_blog/creation/success/123366835

2022-11-01

人脸比对与人脸识别C++代码与模型

1.使用C++与opencv实现了人脸检测与人脸对比。 2.项目是好vs2019的工程,项目所有依赖都在里面,下载之后要配置include和lib路径。 3.项目可以支持GPU推理。 4.点开我的博客,可以找到实现的相关步骤与源码配置方法。

2022-10-26

高清视频与图像人像抠图

RobustVideoMatting是来自字节跳动视频人像抠图算法(RVM),专为稳定人物视频抠像设计。 不同于现有神经网络将每一帧作为单独图片处理,RVM 使用循环神经网络,在处理视频流时有时间记忆。RVM 可在任意视频上做实时高清人像抠图。

2022-10-25

OpenCV视频人脸自动打码

1.基于OpenCV和C++实现的视频人脸自动打码功能。 2.工程是Vs2019工程,所有的依赖都在工程里面。 3.下载之后不会配置工程的可以跳转到相关博客对着配置就可以。

2022-10-23

Yolov7目标检测与实例分割的C++推理代码

1.Yolov7目标检测与实例分割的C++推理代码, 2.开发环境,开发环境是win10,OpenCV4.5,NCNN,IDE 是Vs2019。 3.关于源码配置可以看我的博客,有详细的步骤。

2022-10-19

目标识别与区域入侵检测

1.区域入侵检测是通过识别目标之后或者目标坐标位置,判断目标坐标是否在所规定的区域内出现,使用在电子围栏,不安全区域入侵检测,智慧城市,安防监控等领域。 2.这里的编译环境是Win 10, vs2019,OpenCV4.5, 目标检测算法用的yolov5,实现语言使用的语言是C++。 3.算法实现与项目配置可以参数我的博客:基于目标识别的区域入侵检测——C++实现从获取区域到检测入侵目标

2022-07-11

安全帽头盔佩戴检测识别

1.检测与识别当前的人是否佩戴了安全帽 2.C++ 源码与模型部署。 3.下载之后可以使用vs2019直接运行。 4.包含了所有用到的依赖库。 5.参考博文:https://blog.csdn.net/matt45m/article/details/124702919?spm=1001.2014.3001.5502

2022-05-15

Yolov5-v3安全帽检测

1.这是一个检测是否佩戴安全帽的完整训练代码项目,包含一个已训练好的yolov5m的模型,mAP在90%以上,能直接应用于要求不高的场景上。 2.参考博文:https://blog.csdn.net/matt45m/article/details/124702919?spm=1001.2014.3001.5502

2022-05-15

dfinity Internet Identity使用示例

1.Internet Identity是由ICP支持的匿名区块链认证框架。用户可以创建自己的身份“锚”,将兼容的加密设备分配写入到当前设备,如笔记本电脑上的指纹传感器、手机上的面部识别系统,或便携式HSM,如YubiKey或Ledger钱包。然后,用户可以使用分配给他们的身份锚设备,注册验证ICP的dapp。这提供了很高的便利性,允许用户以极低的摩擦来验证他们感兴趣的dapp,同时受益于最高级别的加密安全性,但不需要直接管理或处理加密密钥材料。这样可以防止出错和关键材料被盗。系统对dapp进行了匿名化,每当一个锚与dapp交互时,dapp就会看到一个特别生成的假名,这可以防止用户在使用不同的dapp时被跟踪。每个用户可以创建任意数量的身份锚。 2.与大多数登录认证方法不同,Internet Identity 不需要设置和管理密码,也不需要向 dapps 或 Internet Identity 提供任何个人识别信息,这样大大的提高了安全性。 3.这里将演示如何使用Internet Identity身份,获取当前PID,使用的语言是motoko和ts。

2022-05-03

LiteSeg语义分割 C++ 模型部署

LiteSeg语义分割的模型和源码,使用OpenCV 的Dnn进行推理

2022-05-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除