LeetCode—Compare Version Numbers

本文详细阐述了如何通过编程实现版本号之间的比较,并提供了一种优化的算法解决方案,简化了比较过程,使得效率更高。

Compare two version numbers version1 and version1.
If version1 > version2 return 1, if version1 < version2 return -1, otherwise return 0.

You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.

Here is an example of version numbers ordering:

0.1 < 1.1 < 1.2 < 13.37

刚拿到题目的时候主要是对题目理解了很久啊

其实意思很简单,每一个字符串中有一些数字和‘.’,‘.’的作用只是为了把数字分开,然后依次比较大小

在自己写的很土的方法中,就是简单的先把两个string分解到对应的vector当中,这里有几个需要注意的地方

两个字符串中的数字长度不是相等的,所以如果前面都相等还要看后面

11.22.33.00.00000 = 11.22.33

11.22.33.01 > 11.22.33

还有就是字符串最后面是没有'.'符号的,这里需要注意

class Solution {
public:
    int compareVersion(string version1, string version2) {
        vector<int> ver1;
	vector<int> ver2;
	int val1 = 0,val2 = 0;
	int i = 0,j = 0;
	while (i < version1.length())
	{
		if(version1[i] != '.')
		{
			val1 = val1*10+(version1[i]-'0');
		}
		else
		{
			ver1.push_back(val1);
			val1 = 0;
		}
		i++;
	}
	while (j < version2.length())
	{
		if (version2[j] != '.')
		{
			val2 = val2*10+(version2[j]-'0');
		}
		else
		{
			ver2.push_back(val2);
			val2 = 0;
		}
		j++;

	}
	ver1.push_back(val1);
	ver2.push_back(val2);
	bool flag = ver1.size() <= ver2.size();
	int length = flag? ver1.size():ver2.size();
	for (i = 0; i < length; i++)
	{
		if (ver1[i] > ver2[i])
		{
			return 1;
		}
		else if(ver1[i] < ver2[i])
		{
			 return -1;
		}
	}
	if (flag)
	{
		for (i = length; i < ver2.size(); i++)
		{
			if (ver2[i] != 0)
			{
				return -1;
			}
		}
		return 0;
	}
	else
	{
		for (i = length; i < ver1.size(); i++)
		{
			if (ver1[i] != 0)
			{
				return 1;
			}
		}
		return 0;
	}
    }
};

下面是网上的一些别的算法,思想上都大同小异,但是代码因为在while循环内,而且只循环一遍着实是简便了很多:
class Solution {
public:
    int compareVersion(string version1, string version2) {
        int lev1=0,lev2=0;
        int id1=0,id2=0;
        while(id1!=version1.length()||id2!=version2.length()){
            lev1=0;
            while(id1<version1.length()){
                if(version1[id1]=='.'){
                    ++id1;
                    break;
                }
                lev1=lev1*10+(version1[id1]-'0');
                ++id1;
            }
            
            lev2=0;
            while(id2<version2.length()){
                if(version2[id2]=='.'){
                    ++id2;
                    break;
                }
                lev2=lev2*10+(version2[id2]-'0');
                ++id2;
            }
            
            if(lev1>lev2){
                return 1;
            }else if(lev1<lev2){
                return -1;
            }
        }
        return 0;//equal
    }
};



基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值