使用对称加密算法时,密钥交换是个大难题,所以Diffie和Hellman提出了著名的Diffie-Hellman密钥交换算法。
Diffie-Hellman密钥交换算法原理:
(1)Alice与Bob确定两个大素数n和g,这两个数不用保密 (2)Alice选择另一个大随机数x,并计算A如下:A=gx mod n (3)Alice将A发给Bob (4)Bob选择另一个大随机数y,并计算B如下:B=gy mod n (5)Bob将B发给Alice (6)计算秘密密钥K1如下:K1=Bx mod n (7)计算秘密密钥K2如下:K2=Ay mod n K1=K2,因此Alice和Bob可以用其进行加解密
RSA加密算法是基于这样的数学事实:两个大素数相乘容易,而对得到的乘积求因子则很难。加密过程如下:
(1)选择两个大素数P、Q (2)计算N=P*Q (3)选择一个公钥(加密密钥)E,使其不是(P-1)与(Q-1)的因子 (4)选择私钥(解密密钥)D,满足如下条件: (D*E) mod (P-1)(Q-1)=1 (5)加密时,明文PT计算密文CT如下: CT=PTE mod N (6)解密时,从密文CT计算明文PT如下: PT=CTDmodN 这也是SSL中会用一种密钥交换算法。
From:http://kb.cnblogs.com/page/162080/