密钥交换算法

使用对称加密算法时,密钥交换是个大难题,所以Diffie和Hellman提出了著名的Diffie-Hellman密钥交换算法。

  Diffie-Hellman密钥交换算法原理:

(1)Alice与Bob确定两个大素数n和g,这两个数不用保密
(2)Alice选择另一个大随机数x,并计算A如下:A=gx mod n
(3)Alice将A发给Bob
(4)Bob选择另一个大随机数y,并计算B如下:B=gy mod n
(5)Bob将B发给Alice
(6)计算秘密密钥K1如下:K1=Bx mod n
(7)计算秘密密钥K2如下:K2=Ay mod n
K1=K2,因此Alice和Bob可以用其进行加解密 

  RSA加密算法是基于这样的数学事实:两个大素数相乘容易,而对得到的乘积求因子则很难。加密过程如下:

(1)选择两个大素数P、Q
(2)计算N=P*Q
(3)选择一个公钥(加密密钥)E,使其不是(P-1)与(Q-1)的因子
(4)选择私钥(解密密钥)D,满足如下条件:
          (D*E) mod (P-1)(Q-1)=1
(5)加密时,明文PT计算密文CT如下:
          CT=PTE mod N
(6)解密时,从密文CT计算明文PT如下:
          PT=CTDmodN 这也是SSL中会用一种密钥交换算法。 
 
 
From:http://kb.cnblogs.com/page/162080/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值