poj 2479 Maximum sum(求最大子段和的延伸)

题目链接


题意:

       题目的大概意思是把数组分成不交两段,分别求出两段的最大子段和s1和s2,然后求出最大的s1+s2。不知道最大子段和的点这  here

思路:

      看完最大连续子段和 的 dp算法 这个很容易理解,我用dplift[i]保存第1到第i个之间的最大子段和,dpright[i]保存第i到第n个之间的最大子段和,最终结果就是dplift[i]+dpright[i+1]中最大的一个。


代码

//poj 2479 Maximum sum
//2013-05-01-17.26
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int maxn = 50005;
int dplift[maxn];
int dpright[maxn];
int a[maxn];

int main()
{
    int t, n;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
        }

        dplift[1] = a[1];
        for (int i = 2; i <= n; i++)
        {
            if (dplift[i-1] > 0)
                dplift[i] = dplift[i-1] + a[i];
            else
                dplift[i] = a[i];
        }
        for (int i = 2; i <= n; i++)
            dplift[i] = max(dplift[i], dplift[i-1]);

        dpright[n] = a[n];
        for (int i = n-1; i >= 1; i--)
        {
            if (dpright[i+1] > 0)
                dpright[i] = dpright[i+1] + a[i];
            else
                dpright[i] = a[i];
        }
        for (int i = n-1; i >= 1; i--)
            dpright[i] = max(dpright[i+1], dpright[i]);

        int ans = dplift[1] + dpright[2];
        for (int i = 2; i < n; i++)
        {
            ans = max(dplift[i]+dpright[i+1], ans);
        }
        printf("%d\n", ans);
    }
    return 0;
}

<think>好的,我现在需要帮助用户找到关于POJ最大问题的题目或法。用户提到的是“maximum sum problem”,根据提供的引用,引用[1]里提到了POJ 1481 Maximum sum动态规划法。所以首先确定题目编号是1481。 接下来,用户需要法或问题。根据引用内容,问题描述是给定一组整数,找出两个不重叠的数组,使得它们的最大动态规划的方法被提到,所以需要释如何用动态规划决这个问题。 首先,我需要确认问题的大意:找到两个不相交的数组,使得它们的最大。这需要分问题,可能分为两个步骤:先找到从左到右的最大数组,再找到从右到左的最大数组,或者类似的方法。 然后,动态规划的思路通常是记录当前最大,或者前向后向的最大值。例如,维护两个数组leftright,left[i]表示从0到i的最大数组,right[j]表示从j到n-1的最大数组。然后遍历所有可能的分割点,计算left[i] + right[i+1]的最大值。 需要确保这两个数组不重叠,所以分割点必须满足第一个数组结束在i,第二个开始于i+1之后。因此,可能需要两次遍历,一次从左到右,一次从右到左,存储每个位置的最大值。 然后,编写代码示例,可能使用Python。例如,先计算left数组,再计算right数组,然后遍历所有可能的分割点,找到最大的组合。需要注意数组的索引范围,避免越界。 此外,引用中提到的其他POJ题目资源,如引用[2][3]提供了刷题顺序,可能用户对题目难度顺序也有兴趣,所以可以推荐这些资源,帮助用户按难度练习。 最后,生成相关问题,可能涉及动态规划的其他应用,类似的最大问题变种,或者POJ题目的推荐顺序。确保问题与用户的需相关,帮助他们深入理题目法。</think>关于POJ 1481 Maximum sum问题的题目描述如下: ### POJ 1481 Maximum sum问题描述 给定$n$个整数的集合$A=\{a_1, a_2,...,a_n\}$,定义函数$d(A)$为满足以下条件的最大: $$ d(A) = \max\left\{ \sum_{i=s_1}^{t_1} a_i + \sum_{j=s_2}^{t_2} a_j \ \big| \ 1 \leq s_1 \leq t_1 < s_2 \leq t_2 \leq n \right\} $$ 即寻找两个**不重叠**的数组,使得它们的最大[^1]。 --- ### 动态规划法 #### 核心思路 1. **预处理左右区间最大**: - 用$left[i]$表示从$a_1$到$a_i$区间内的最大 - 用$right[j]$表示从$a_j$到$a_n$区间内的最大 2. **遍历分割点**: 对于每个分割点$k$($1 \leq k < n$),计算$left[k] + right[k+1]$的最大值 #### 算法步骤 1. 正向遍历数组,计算$left$数组(类似最大) 2. 反向遍历数组,计算$right$数组 3. 遍历所有可能的分割点,最大 --- ### Python代码实现 ```python def max_sum(arr): n = len(arr) # 计算左半部分最大 left = [0] * n current = left[0] = arr[0] for i in range(1, n): current = max(arr[i], current + arr[i]) left[i] = max(left[i-1], current) # 计算右半部分最大 right = [0] * n current = right[-1] = arr[-1] for i in range(n-2, -1, -1): current = max(arr[i], current + arr[i]) right[i] = max(right[i+1], current) # 寻找最大组合 max_val = -float('inf') for k in range(n-1): max_val = max(max_val, left[k] + right[k+1]) return max_val ``` --- ### POJ题目资源推荐 1. **题目难度列表**:引用[2]提供了POJ从易到难的刷题顺序,适合循序渐进练习 2. **同类问题扩展**:可尝试POJ 2479Maximum sum进阶版)、POJ 2593(双字最大变种) 3. **训练路径**:参考引用[3]的刷题顺序规划,建议先掌握基础动态规划再挑战本题 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xindoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值