问题描述:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right whichminimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
问题来源:Minimum Path Sum (详细地址:https://leetcode.com/problems/minimum-path-sum/description/)
思路分析:题目的意思就是从矩阵的最上端走到矩阵的最右下端,找到所有路径中和最小的那一条。这道题显然就是动态规划了,为啥呢?假设我们走到(i,j)这个位置了,它绝对是(i-1,j)或者(i,j-1)其中的一条路走过来的,换成代码就是sum[i][j] = min(sum[i - 1][j], sum[i][j - 1]) + grid[i][j];这就相当于是动态规划当中的状态转移方程。当然了,我们也得考虑好边界情况,就是第一行和第一列了,其他的格子都可以由状态方程得到。在这,我使用了二维数组和一维数组两种实现形式,二维数组的好处就是好理解一些,一维数组当然就是能节省空间了。为了便于一维数组的理解,我在其中特意加了一些注释,希望能帮到大家吧。
代码:
二维数组的解法:
一维数组的解法(第0行和第0列也需要特殊处理,和正常的状态转移方程不太一样):