Leetcode之Minimum Path Sum 问题

问题描述:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right whichminimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

问题来源:Minimum Path Sum (详细地址:https://leetcode.com/problems/minimum-path-sum/description/)

思路分析:题目的意思就是从矩阵的最上端走到矩阵的最右下端,找到所有路径中和最小的那一条。这道题显然就是动态规划了,为啥呢?假设我们走到(i,j)这个位置了,它绝对是(i-1,j)或者(i,j-1)其中的一条路走过来的,换成代码就是sum[i][j] = min(sum[i - 1][j], sum[i][j - 1]) + grid[i][j];这就相当于是动态规划当中的状态转移方程。当然了,我们也得考虑好边界情况,就是第一行和第一列了,其他的格子都可以由状态方程得到。在这,我使用了二维数组和一维数组两种实现形式,二维数组的好处就是好理解一些,一维数组当然就是能节省空间了。为了便于一维数组的理解,我在其中特意加了一些注释,希望能帮到大家吧。

代码:

二维数组的解法:


一维数组的解法(第0行和第0列也需要特殊处理,和正常的状态转移方程不太一样):




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值