nyoj 16 矩形嵌套

这篇博客探讨了如何使用动态规划方法解决矩形嵌套的问题,详细阐述了动态规划在有向无环图(DAG)上的应用。文中还提供了获得正确答案的AC代码,并展示了序列化的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩形嵌套

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5

动态规划,DAG上的动态规划:

AC代码:

 
#include <iostream>
#include <string.h>
using namespace std;
int G[1010][1010];
int d[1010];
int dp(int i,int n){
	int &ans=d[i];
	if(ans>0) return ans;
	ans=1;
	for(int j=1;j<=n;j++)
		if(G[i][j]) 
			if(ans<dp(j,n)+1)
				ans=dp(j,n)+1;
	return ans;
}
int main()
{
	int N;
	cin>>N;	
	while(N--){
		int n,a[1010],b[1010];
		memset(G,0,sizeof(G));
		memset(d,0,sizeof(d));
		cin>>n;
		for(int i=1;i<=n;i++)
			cin>>a[i]>>b[i];
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				if((a[i]>a[j]&&b[i]>b[j])||(a[i]>b[j]&&b[i]>a[j])) G[i][j]=1;
		//for(int i=0;i<n;i++)
		//	for(int j=0;j<n;j++)
		//		if(G[i][j])  cout<<i<<"-->"<<j<<endl;
		int max=0;
		for(int i=1;i<=n;i++)
			if(dp(i,n)>max) max=dp(i,n);
		cout<<max<<endl;
		
	}
	return 0;
}        



打印出结果的序列:

#include <iostream>
#include <string.h>
using namespace std;
int G[1010][1010];
int d[1010];
int n;
int dp(int i){
	int &ans=d[i];
	if(ans>0) return ans;
	ans=1;
	for(int j=1;j<=n;j++)
		if(G[i][j]) 
			if(ans<dp(j)+1)
				ans=dp(j)+1;
	return ans;
}
void print_ans(int i){
	printf("%d ",i);
	for(int j=1;j<=n;j++) 
		if(G[i][j]&&d[i]==d[j]+1){
			print_ans(j);
			break;
		}
}
int main()
{
	int N;
	cin>>N;	
	while(N--){
		int a[1010],b[1010];
		memset(G,0,sizeof(G));
		memset(d,0,sizeof(d));
		cin>>n;
		for(int i=1;i<=n;i++)
			cin>>a[i]>>b[i];
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				if((a[i]>a[j]&&b[i]>b[j])||(a[i]>b[j]&&b[i]>a[j])) G[i][j]=1;
		//for(int i=0;i<n;i++)
		//	for(int j=0;j<n;j++)
		//		if(G[i][j])  cout<<i<<"-->"<<j<<endl;
		int max=0,max_i=0;
		for(int i=1;i<=n;i++)
			if(dp(i)>max) {
				max=dp(i);
				max_i=i;
			}
		print_ans(max_i);
		cout<<endl;
		
	}
	return 0;
}


结果:

d

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值