矩形嵌套
时间限制:3000 ms | 内存限制:65535 KB
难度:4
-
描述
- 有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
-
输入
- 第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出 - 每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行 样例输入
-
1 10 1 2 2 4 5 8 6 10 7 9 3 1 5 8 12 10 9 7 2 2
样例输出 -
5
- 第一行是一个正正数N(0<N<10),表示测试数据组数,
动态规划,DAG上的动态规划:
AC代码:
#include <iostream>
#include <string.h>
using namespace std;
int G[1010][1010];
int d[1010];
int dp(int i,int n){
int &ans=d[i];
if(ans>0) return ans;
ans=1;
for(int j=1;j<=n;j++)
if(G[i][j])
if(ans<dp(j,n)+1)
ans=dp(j,n)+1;
return ans;
}
int main()
{
int N;
cin>>N;
while(N--){
int n,a[1010],b[1010];
memset(G,0,sizeof(G));
memset(d,0,sizeof(d));
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i]>>b[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if((a[i]>a[j]&&b[i]>b[j])||(a[i]>b[j]&&b[i]>a[j])) G[i][j]=1;
//for(int i=0;i<n;i++)
// for(int j=0;j<n;j++)
// if(G[i][j]) cout<<i<<"-->"<<j<<endl;
int max=0;
for(int i=1;i<=n;i++)
if(dp(i,n)>max) max=dp(i,n);
cout<<max<<endl;
}
return 0;
}
打印出结果的序列:
#include <iostream>
#include <string.h>
using namespace std;
int G[1010][1010];
int d[1010];
int n;
int dp(int i){
int &ans=d[i];
if(ans>0) return ans;
ans=1;
for(int j=1;j<=n;j++)
if(G[i][j])
if(ans<dp(j)+1)
ans=dp(j)+1;
return ans;
}
void print_ans(int i){
printf("%d ",i);
for(int j=1;j<=n;j++)
if(G[i][j]&&d[i]==d[j]+1){
print_ans(j);
break;
}
}
int main()
{
int N;
cin>>N;
while(N--){
int a[1010],b[1010];
memset(G,0,sizeof(G));
memset(d,0,sizeof(d));
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i]>>b[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if((a[i]>a[j]&&b[i]>b[j])||(a[i]>b[j]&&b[i]>a[j])) G[i][j]=1;
//for(int i=0;i<n;i++)
// for(int j=0;j<n;j++)
// if(G[i][j]) cout<<i<<"-->"<<j<<endl;
int max=0,max_i=0;
for(int i=1;i<=n;i++)
if(dp(i)>max) {
max=dp(i);
max_i=i;
}
print_ans(max_i);
cout<<endl;
}
return 0;
}
结果: