题目链接:矩形嵌套
矩形嵌套
时间限制:3000 ms | 内存限制:65535 KB
难度:4
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1 10 1 2 2 4 5 8 6 10 7 9 3 1 5 8 12 10 9 7 2 2
样例输出
5
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
该题目同样可以两个方法,第一种递归是遍历每一个点,记录每一个点最大的矩阵嵌套,如果已经求过的,像数字三角形那样保存起来。直接return就行了
递归解法:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
struct Rec{
int x,y;
}rec[1010];
int G[1010][1010]; //图
int N,n;
int d[1010]; //保存每个点嵌套长度
int dp(int cur) {
if(d[cur]) return d[cur]; //如果已经知道了就返回
for(int i = 0; i < n; i++) {
if(G[cur][i]) d[cur] = max(d[cur],dp(i));
}
d[cur]++;
return d[cur];
}
int main()
{
scanf("%d",&N);
while(N--) {
memset(G,0,sizeof(G));
memset(d,0,sizeof(d));
scanf("%d",&n);
for(int i = 0; i < n; i++) {
scanf("%d%d",&rec[i].x,&rec[i].y);
if(rec[i].x > rec[i].y) swap(rec[i].x,rec[i].y); //让x永远小于y
for(int j = 0; j < i; j++) //建图
if(rec[j].x < rec[i].x && rec[j].y < rec[i].y) G[i][j] = 1;
else if(rec[j].x > rec[i].x && rec[j].y > rec[i].y) G[j][i] = 1;
}
//遍历所有矩形,保存每个矩形的嵌套长度
int maxn = -inf;
for(int i = 0; i < n; i++) {
if(!d[i]) dp(i);
maxn = max(maxn,d[i]);
}
printf("%d\n",maxn);
}
return 0;
}
递推解法,这种解法是按照最长上升子序列的想法转变而来的,我们需要将他按照x和y的大小排好序,那么大的矩阵就是大的数字,其中有些y不够或者x不够的就是其中较小的数字,这样一转移就是变成了递推解法
递推:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
struct Rec{
int x,y;
friend bool operator <(const Rec& a, const Rec& b) {
if(a.x != b.x) return a.x < b.x;
else return a.y < b.y;
}
}rec[1010];
int G[1010][1010]; //图
int N,n;
int d[1010]; //保存每个点嵌套长度
int main()
{
scanf("%d",&N);
while(N--) {
memset(G,0,sizeof(G));
scanf("%d",&n);
for(int i = 0; i < n; i++) {
scanf("%d%d",&rec[i].x,&rec[i].y);
if(rec[i].x > rec[i].y) swap(rec[i].x,rec[i].y); //让x永远小于y
}
sort(rec,rec+n);
//先全部赋值为1
for(int i = 0; i < n; i++) d[i] = 1;
for(int i = 0; i < n; i++) {
for(int j = 0; j < i; j++) {
if(rec[i].x > rec[j].x && rec[i].y > rec[j].y) //如果i能被j嵌套
d[i] = max(d[i],d[j]+1);
}
}
int maxn = -inf;
for(int i = 0; i < n; i++) maxn = max(maxn,d[i]);
printf("%d\n",maxn);
}
return 0;
}