动态规划——矩形嵌套

题目链接:矩形嵌套

矩形嵌套

时间限制:3000 ms  |  内存限制:65535 KB

难度:4

输入

第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽

输出

每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行

样例输入

1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出

5

描述

有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

 

该题目同样可以两个方法,第一种递归是遍历每一个点,记录每一个点最大的矩阵嵌套,如果已经求过的,像数字三角形那样保存起来。直接return就行了

递归解法:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;

struct Rec{
    int x,y;
}rec[1010];

int G[1010][1010];  //图
int N,n;

int d[1010];    //保存每个点嵌套长度

int dp(int cur) {
    if(d[cur]) return d[cur];   //如果已经知道了就返回
    for(int i = 0; i < n; i++) {
        if(G[cur][i]) d[cur] = max(d[cur],dp(i));
    }
    d[cur]++;
    return d[cur];
}

int main()
{
    scanf("%d",&N);
    while(N--) {
        memset(G,0,sizeof(G));
        memset(d,0,sizeof(d));

        scanf("%d",&n);
        for(int i = 0; i < n; i++) {
            scanf("%d%d",&rec[i].x,&rec[i].y);
            if(rec[i].x > rec[i].y) swap(rec[i].x,rec[i].y);    //让x永远小于y
            for(int j = 0; j < i; j++)  //建图
                if(rec[j].x < rec[i].x && rec[j].y < rec[i].y) G[i][j] = 1;
                else if(rec[j].x > rec[i].x && rec[j].y > rec[i].y) G[j][i] = 1;
        }

        //遍历所有矩形,保存每个矩形的嵌套长度
        int maxn = -inf;
        for(int i = 0; i < n; i++) {
            if(!d[i]) dp(i);
            maxn = max(maxn,d[i]);
        }
        printf("%d\n",maxn);
    }

    return 0;
}

 

递推解法,这种解法是按照最长上升子序列的想法转变而来的,我们需要将他按照x和y的大小排好序,那么大的矩阵就是大的数字,其中有些y不够或者x不够的就是其中较小的数字,这样一转移就是变成了递推解法

递推:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;

struct Rec{
    int x,y;
    friend bool operator <(const Rec& a, const Rec& b) {
        if(a.x != b.x)  return a.x < b.x;
        else return a.y < b.y;
    }
}rec[1010];

int G[1010][1010];  //图
int N,n;

int d[1010];    //保存每个点嵌套长度

int main()
{
    scanf("%d",&N);
    while(N--) {
        memset(G,0,sizeof(G));

        scanf("%d",&n);
        for(int i = 0; i < n; i++) {
            scanf("%d%d",&rec[i].x,&rec[i].y);
            if(rec[i].x > rec[i].y) swap(rec[i].x,rec[i].y);    //让x永远小于y
        }

        sort(rec,rec+n);
        //先全部赋值为1
        for(int i = 0; i < n; i++) d[i] = 1;
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < i; j++) {
                if(rec[i].x > rec[j].x && rec[i].y > rec[j].y)  //如果i能被j嵌套
                    d[i] = max(d[i],d[j]+1);
            }
        }
        int maxn = -inf;
        for(int i = 0; i < n; i++) maxn = max(maxn,d[i]);

        printf("%d\n",maxn);
    }

    return 0;
}

 

### 嵌套数组的概念与使用方法 嵌套数组是指在一个数组中包含另一个数组作为其元素的一种数据结构。这种结构可以用来表示多维空间或者分层的数据集合。 #### 1. **概念** 嵌套数组的结构类似于树形结构或多级文件夹体系[^2]。每一层都可以看作是一个容器,其中可能包含了更多的子容器或者是最终的数据单元(即叶子节点)。例如,在MATLAB中可以通过特定的方式访问这些深层次的数据项[^1]。 #### 2. **声明方式** 不同编程语言对于嵌套数组的支持有所不同: - **C#:** C#支持两种形式的二维或多维数组——固定长度的矩形数组以及不规则形状的锯齿状数组(Jagged Arrays),后者实际上就是一种嵌套的一维数组构成的形式[^3]。 ```csharp // 矩形数组 (等长) int[,] rectArray = new int[2, 4] { {1, 2, 3, 4}, {5, 6, 7, 8} }; // 锯齿数组 (不等长) int[][] jaggedArray = new int[2][]; jaggedArray[0] = new int[] {1, 2}; jaggedArray[1] = new int[] {3, 4, 5}; Console.WriteLine(jaggedArray[1][2]); // 输出 '5' ``` - **JavaScript:** JavaScript中的数组本质上是动态类型的对象列表,因此非常容易实现嵌套数组,并且允许每层具有不同的大小和类型[^4]^。 ```javascript let nestedArr = [ ["a", "b"], [1, 2], [[true], false] ]; console.log(nestedArr[2][0][0]); // true ``` #### 3. **操作技巧** 由于嵌套数组可能会变得相当复杂,所以在对其进行遍历、修改或其他运算时需要注意逻辑清晰度以减少潜在错误的发生概率: - **遍历**: 对于简单的两层数组可以直接采用双重for循环完成迭代过程;而对于更深次序的情况,则需考虑递归函数的应用。 ```javascript function traverseNestedArray(array){ array.forEach(item => { if(Array.isArray(item)){ traverseNestedArray(item); }else{ console.log(item); } }); } traverseNestedArray([['apple', ['banana']], 'cherry']); ``` - **查找更新**: 当需要定位某个具体位置上的值并加以改变的时候,必须确切知道该目标所在的路径索引序列[^5]. #### 4. **应用场景** 尽管存在一定的理解和维护难度,但在某些特殊场景下仍然非常适合运用到嵌套数组上,比如表格型数据显示、矩阵计算等领域. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值