动态规划——矩形嵌套

题目链接:矩形嵌套

矩形嵌套

时间限制:3000 ms  |  内存限制:65535 KB

难度:4

输入

第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽

输出

每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行

样例输入

1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出

5

描述

有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

 

该题目同样可以两个方法,第一种递归是遍历每一个点,记录每一个点最大的矩阵嵌套,如果已经求过的,像数字三角形那样保存起来。直接return就行了

递归解法:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;

struct Rec{
    int x,y;
}rec[1010];

int G[1010][1010];  //图
int N,n;

int d[1010];    //保存每个点嵌套长度

int dp(int cur) {
    if(d[cur]) return d[cur];   //如果已经知道了就返回
    for(int i = 0; i < n; i++) {
        if(G[cur][i]) d[cur] = max(d[cur],dp(i));
    }
    d[cur]++;
    return d[cur];
}

int main()
{
    scanf("%d",&N);
    while(N--) {
        memset(G,0,sizeof(G));
        memset(d,0,sizeof(d));

        scanf("%d",&n);
        for(int i = 0; i < n; i++) {
            scanf("%d%d",&rec[i].x,&rec[i].y);
            if(rec[i].x > rec[i].y) swap(rec[i].x,rec[i].y);    //让x永远小于y
            for(int j = 0; j < i; j++)  //建图
                if(rec[j].x < rec[i].x && rec[j].y < rec[i].y) G[i][j] = 1;
                else if(rec[j].x > rec[i].x && rec[j].y > rec[i].y) G[j][i] = 1;
        }

        //遍历所有矩形,保存每个矩形的嵌套长度
        int maxn = -inf;
        for(int i = 0; i < n; i++) {
            if(!d[i]) dp(i);
            maxn = max(maxn,d[i]);
        }
        printf("%d\n",maxn);
    }

    return 0;
}

 

递推解法,这种解法是按照最长上升子序列的想法转变而来的,我们需要将他按照x和y的大小排好序,那么大的矩阵就是大的数字,其中有些y不够或者x不够的就是其中较小的数字,这样一转移就是变成了递推解法

递推:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;

struct Rec{
    int x,y;
    friend bool operator <(const Rec& a, const Rec& b) {
        if(a.x != b.x)  return a.x < b.x;
        else return a.y < b.y;
    }
}rec[1010];

int G[1010][1010];  //图
int N,n;

int d[1010];    //保存每个点嵌套长度

int main()
{
    scanf("%d",&N);
    while(N--) {
        memset(G,0,sizeof(G));

        scanf("%d",&n);
        for(int i = 0; i < n; i++) {
            scanf("%d%d",&rec[i].x,&rec[i].y);
            if(rec[i].x > rec[i].y) swap(rec[i].x,rec[i].y);    //让x永远小于y
        }

        sort(rec,rec+n);
        //先全部赋值为1
        for(int i = 0; i < n; i++) d[i] = 1;
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < i; j++) {
                if(rec[i].x > rec[j].x && rec[i].y > rec[j].y)  //如果i能被j嵌套
                    d[i] = max(d[i],d[j]+1);
            }
        }
        int maxn = -inf;
        for(int i = 0; i < n; i++) maxn = max(maxn,d[i]);

        printf("%d\n",maxn);
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值