【BZOJ2038】小Z的袜子,第一次的莫队算法

传送门
写在前面:莫队竟如此暴力……
思路:当初我对这个题的第一感觉——这个区间问题可以用线段树或者树状数组?答案当然是不能,于是我就去简单学了下莫队算法。在我看来,莫队(分块版,不是二维曼哈顿距离什么什么最小生成树)就是分块排序优化暴力查找,减少查找区间之间的覆盖长度,从而优化时间复杂度,有一种说法很精彩

如果我们已知[l,r]的答案,能在O(1)时间得到[l+1,r]的答案以及[l,r-1]的答案,即可使用莫队算法。时间复杂度为O(n^1.5)。如果只能在logn的时间移动区间,则时间复杂度是O(n^1.5*log
n)。 其实就是找一个数据结构支持插入、删除时维护当前答案。

这道题的话我们很容易用数组来实现,做到O(1)的从[l,r]转移到[l,r+1]与[l+1,r]。

那么莫队算法怎么做呢?以下都是在转移为O(1)的基础下讨论的时间复杂度。另外由于n与m同阶,就统一写n。
如果已知[l,r]的答案,要求[l’,r’]的答案,我们很容易通过|l – l’|+|r – r’|次转移内求得。

对于它的时间复杂度分析

将n个数分成sqrt(n)块。 按区间排序,以左端点所在块内为第一关键字,右端点为第二关键字,进行排序,也就是以(pos [l],r)排序
然后按这个排序直接暴力,复杂度分析是这样的:
1、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n^0.5块,所以这一部分时间复杂度是n^1.5。
2、i与i+1跨越一块,r最多变化n,由于有n^0.5块,所以这一部分时间复杂度是n^1.5
3、i与i+1在同一块内时变化不超过n^0.5,跨越一块也不会超过n^0.5,忽略*2。由于有n个数,所以时间复杂度是n^1.5
于是就是O(n^1.5)了

这道题是比较模板的莫队分块了,对于一个区间询问[L,R],我们要求的ans是
ans=(Σsum(color[i])1)sum(color[i])/2)/((RL+1)(RL))
简化可得
ans=(Σ(sum(color[i])2)(RL+1))/((RL+1)(RL))
其中 sum(color[i]) 指第i种颜色在[L,R]中出现的次数
那么我们现在求出各个询问区间中 sum(color[i])2 就行了,具体实现方法参照代码
注意:
1.当一种颜色数量ci增加1时,我们可以看出 ans=ansci2+(ci+1)2 ,简化可得 ans=ans+(ci2+1) ,同样减少1时, ans=ansci2+(ci1)2 ,简化得 ans=ans+(ci21) ,这样做的好处是减少乘法且可用位运算,优化常数(然而并没有什么卵用)
2.极限数据50000*50000如果不用longlong会教你做人←_←
代码:

#include"bits/stdc++.h"
#define LL long long
using namespace std;
int n,m,last_l=1,last_r;
LL ans,p;
int color[50010],block[50010];
LL sum[50010];
struct os
{
    LL part,l,r,nume,deno;//nume指分子,deno指分母
}q[50010];
int cmp1(os xx,os yy)
{
    if (block[xx.l]<block[yy.l]) return 1;
    if (block[xx.l]>block[yy.l]) return 0;
    return xx.r<yy.r;
}
int cmp2(os xx,os yy){return xx.part<yy.part;}
inline LL gcd(LL x,LL y)
{
    if (!y) return x;
    return gcd(y,x%y);
}
main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) scanf("%d",&color[i]);
    block[0]=sqrt(n);
    for (int i=1;i<=n;i++)
    block[i]=(i-1)/block[0]+1;
    for (int i=1;i<=m;i++)
    scanf("%d%d",&q[i].l,&q[i].r),
    q[i].part=i;
    sort(q+1,q+m+1,cmp1);   

    for (int i=1;i<=m;i++)
    {
        q[i].deno=(q[i].r-q[i].l+1)*(q[i].r-q[i].l);
        if (last_r<q[i].r)
        {
            for (int j=last_r+1;j<=q[i].r;j++)
            ans+=((sum[color[j]]<<1)+1),
            sum[color[j]]++;
        }
        if (last_r>q[i].r)
        {
            for (int j=last_r;j>q[i].r;j--)
            ans-=((sum[color[j]]<<1)-1),
            sum[color[j]]--;
        }
        if (last_l>q[i].l)
        {
            for (int j=last_l-1;j>=q[i].l;j--)
            ans+=((sum[color[j]]<<1)+1),
            sum[color[j]]++;
        }
        if (last_l<q[i].l)
        {
            for (int j=last_l;j<q[i].l;j++)
            ans-=((sum[color[j]]<<1)-1),
            sum[color[j]]--;
        }
        q[i].nume=ans-(q[i].r-q[i].l+1);
        last_l=q[i].l;
        last_r=q[i].r;
    }
    sort(q+1,q+m+1,cmp2);
    for (int i=1;i<=m;i++)
    {
        if (!q[i].nume){printf("0/1\n");continue;}
        p=gcd(q[i].nume,q[i].deno);
        printf("%lld/%lld\n",q[i].nume/p,q[i].deno/p);
    }
}
  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值