Caffe-faster-rcnn demo测试

原创 2016年11月12日 15:06:15

RCNN是目前detection中较新且准确度较高的方法,充分发挥了CNN分类的优势,但速度并不快,从而产生了fast rcnn和faster rcnn来解决这个问题。本文使用py-faster-rcnn对该方法做一初步测试。

rbgirshick/py-faster-rcnn


环境准备

软件环境

  • Caffe
  • Python

一般来说这些我们都已经有所接触,但仍有一些需要注意的地方:

  1. 要使用rbgirshick/py-faster-rcnn中的caffe编译一次,其caffe在rbgirshick/py-faster-rcnn/caffe-fast-rcnn @ 0dcd397中。因为这里面有一些专门为f-rcnn写的层,具体区别可以在caffe.proto中查看,如增加了ROIPoolingParameter、SmoothL1LossParameter等参数。
  2. 编译时一定要增加对Python层(Python layers)的支持
    具体需要打开Makefile.config,找到:

    
    # In your Makefile.config, make sure to have this line uncommented
    
    WITH_PYTHON_LAYER := 1

    将其改为1,否则运行时会出错,提示没有对应的layer。

硬件要求

小的网络用Titan, K20, K40这些就可以,显存3G以上。
大的可能需要K40,11G以上显存,当然这些往往个人无法搭建起来。


安装(DEMO)

  1. 编译Cython模块

    cd $FRCN_ROOT/lib
    make

    $FRCN_ROOT为你的FRCNN根目录,下同。

  2. 编译Caffe 和 pycaffe

    cd $FRCN_ROOT/caffe-fast-rcnn
    
    # Now follow the Caffe installation instructions here:
    
    
    #   http://caffe.berkeleyvision.org/installation.html
    
    
    # If you're experienced with Caffe and have all of the requirements installed
    
    
    # and your Makefile.config in place, then simply do:
    
    make -j8 && make pycaffe

    -j8是指8核编译,更快一些。

  3. 下载预计算的R-CNN检测器

    cd $FRCN_ROOT
    ./data/scripts/fetch_faster_rcnn_models.sh

    这个模型解压出来750M,下载的话大概695M,而且很慢。。
    为了方便大家,我把模型上传到了百度云,faster_rcnn_models, 密码:gbpo。

  4. 运行
    这一步就很简单了,

    cd $FRCN_ROOT
    ./tools/demo.py

    当然权限不足直接运行py也可以。这个运行是需要在图像界面下进行的,否则会报错。

版权声明:本文为博主原创文章,转载请标注出处。

Py-faster-rcnn实现自己的数据train和demo

在我的上两个博客中已经对py-faster-rcnn配置运行demo.py和py-faster-rcnn配置运行faster_rcnn_end2end—VGG_CNN_M_1024做出了相应说明,在本...
  • samylee
  • samylee
  • 2016年04月20日 16:14
  • 25166

使用Faster-Rcnn进行目标检测(实践篇)

原理上一篇文章,已经说过了,大家可以参考一下,Faster-Rcnn进行目标检测(原理篇)实验我使用的代码是python版本的Faster Rcnn,官方也有Matlab版本的,链接如下:py-fas...
  • Gavin__Zhou
  • Gavin__Zhou
  • 2016年07月28日 10:42
  • 36505

【深度学习:目标检测】 py-faster-rcnn demo.py解析

转载:http://blog.csdn.net/xzzppp/article/details/52073107  对py-faster-rcnn/tools/demo.py文件的解析:    ...
  • SMF0504
  • SMF0504
  • 2016年10月07日 19:04
  • 1957

学习Faster-RCNN (py-faster-rcnn demo)

在Fast-R-CNN中,第一步需要先使用Selective Search方法提取图像中的proposals。基于CPU实现的Selective Search提取一幅图像的所有Proposals需要约...
  • dcxhun3
  • dcxhun3
  • 2016年09月18日 18:16
  • 3897

Faster—RCNN源代码解析之demo.py

1、模型选择,以及分类类型:CLASSES = ('__background__', 'aeroplane', 'bicycle', 'bird', 'boat', ...
  • pym1993
  • pym1993
  • 2016年09月14日 16:10
  • 1798

学习Faster-RCNN (一)跑Faster-RCNN的python版demo

一、准备材料 在官网“https://github.com/rbgirshick/py-faster-rcnn#installation-sufficient-for-the-demo”,下载demo...
  • dyx810601
  • dyx810601
  • 2016年01月22日 13:52
  • 5980

faster rcnn修改demo.py保存网络中间结果

faster rcnn用python版本https://github.com/rbgirshick/py-faster-rcnn 以demo.py中默认网络VGG16. 原本demo.py地址...
  • u010668907
  • u010668907
  • 2016年05月17日 21:49
  • 4485

Faster-RCNN+ZF用自己的数据集训练模型(Matlab版本)

说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同。做好数据集后,我们开始训练,下面是训练前的一些修改。 1 、VOCdevkit2007\VOCcode\VOCinit.m...
  • sinat_30071459
  • sinat_30071459
  • 2016年01月20日 10:37
  • 63080

没有界面faster-rcnn 跑demo.py

http://blog.csdn.net/jiajunlee/article/details/50373815 这个博客解决了 编译cd $FRCN_ROOT/lib/ && make   找不...
  • dddccc1234
  • dddccc1234
  • 2016年01月08日 14:18
  • 1434

Faster R-CNN学习笔记

Faster R-CNN(其中R对应于“Region(区域)” )是基于深度学习R-CNN系列目标检测最好的方法。使用VOC2007+2012训练集训练,VOC2007测试集测试mAP达到73.2%,...
  • XZZPPP
  • XZZPPP
  • 2016年06月04日 08:38
  • 43689
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Caffe-faster-rcnn demo测试
举报原因:
原因补充:

(最多只允许输入30个字)